Fabrication of Silver Oxide and Nickel Oxide Nanoparticles by Green Synthesis Method Using Malva Sylvestris Plant Extract
Subject Areas : ChemistryAzam Beheshtian 1 , Mohammad Hadi Givianrad 2 , Hossain-Ali Rafiee-Pour 3 , Parviz Aberoomand Azar 4
1 -
2 -
3 -
4 -
Keywords: nanoparticles, Quercetin, green chemistry, Nickel oxide, silver oxide, malva sylvestris extract,
Abstract :
This paper reports the green preparation of silver oxide and nickel oxide nanoparticles. The malva sylvestris extract was used as the green reductant and capping agent. The prepared nanoparticles were characterized using XRD, SEM, FT-IR, and EDX analysis. The XRD analysis discloses that the prepared silver oxide nanoparticles comprise both Ag2O and Ag metal phases. In addition, it was found that the prepared nickel oxide nanoparticles have an amorphous structure. The FT-IR results show the presence of metal-oxide bonds at the wavenumber range 750-600 cm-1. Also, the green synthesis of the metal oxide nanoparticles was confirmed by the existence of the organic functional groups on the surface of the prepared samples. The SEM images show the spherical nanoparticles in the size range below 50 nm for both prepared nanoparticles. These results reveal the superior ability of the malva sylvestris extract to prepare the fine metal oxide nanoparticles. In this research, synthesized Ag2O nanoparticles (Ag2O NPs) and NiO nanoparticles (NiO NPs) were used as modifiers for carbon paste electrode (CPE) and their effect on the electrochemical determination of Quercetin (QCT) was investigated by using differential pulse voltammetry (DPV).
[1] J.D. Kingsley, H. Dou, J. Morehead, B. Rabinow, H.E. Gendelman, C.J. Destache, Journal of Neuroimmune Pharmacology 1 (2006) 340-350.
[2] L. Dai, D.W. Chang, J.B. Baek, W. Lu, small 8 (2012) 1130-1166.
[3] Z. Abdin, M.A. Alim, R. Saidur, M.R. Islam, W. Rashmi, S. Mekhilef, A. Wadi, Renewable and sustainable energy reviews 26 (2013) 837-852.
[4] S.B. Mitra, D. Wu, B.N. Holmes, The Journal of the American Dental Association 134 (2003) 1382-1390.
[5] D. Rehana, D. Mahendiran, R.S. Kumar, A.K. Rahiman, Biomedicine & Pharmacotherapy 89 (2017) 1067-1077.
[6] H.N. Cuong, S. Pansambal, S. Ghotekar, R. Oza, N.T. Thanh Hai, N.M. Viet, V.-H. Nguyen, Environmental Research 203 (2022) 111858.
[7] J. Jeevanandam, Y.S. Chan, M.K. Danquah, ChemBioEng Reviews 3 (2016) 55-67.
[8] S. Iravani, Green Chemistry 13 (2011) 2638-2650.
[9] K. Alsamhary, N.M. Al-Enazi, E. Alhomaidi, S. Alwakeel, Environmental Research 207 (2022) 112172.
[10] J.C. Gasparetto, C.A.F. Martins, S.S. Hayashi, M.F. Otuky, R. Pontarolo, Journal of Pharmacy and Pharmacology 64 (2012) 172-189.
[11] A. Benhammada, D. Trache, Journal of Thermal Analysis and Calorimetry 147 (2022) 1-16.
[12] X. Wang, Y. Li, X. Guo, Z. Jin, The Journal of Physical Chemistry C 126 (2022) 13015-13024.
[13] J. Guo, N. Akram, L. Zhang, W. Ma, G. Wang, Y. Zhang, A. Ahmad, J. Wang, Journal of Photochemistry and Photobiology A: Chemistry 433 (2022) 114166.
[14] T. Zahra, K.S. Ahmad, C. Zequine, R. Gupta, M.A. Malik, J.H. Niazi, A. Qureshi, Journal of Chemical Technology & Biotechnology 98 (2023) 296-305.
[15] N. El Messaoudi, A. El Mouden, Y. Fernine, M. El Khomri, A. Bouich, N. Faska, Z. Ciğeroğlu, J.H.P. Américo-Pinheiro, A. Jada, A. Lacherai, (2022).
[16] S. Al Gharib, J.-L. Marignier, A.K. El Omar, A. Naja, S. Le Caer, M. Mostafavi, J. Belloni, The Journal of Physical Chemistry C 123 (2019) 22624-22633.
[17] S. Mohaghegh, K. Osouli-Bostanabad, H. Nazemiyeh, Y. Javadzadeh, A. Parvizpur, M. Barzegar-Jalali, K. Adibkia, Advanced Powder Technology 31 (2020) 1169-1180.
[18] A.B. Pebdeni, C.A. Khurshid, S.D. Abkenar, M. Hosseini, ChemistrySelect 6 (2021) 5034-5042.
[19] W.M. Shume, H. Murthy, E.A. Zereffa, Journal of Chemistry 2020 (2020).
[20] A. Rahdar, M. Aliahmad, Y. Azizi, (2015).
[21] F.T. Thema, E. Manikandan, A. Gurib-Fakim, M. Maaza, Journal of Alloys and Compounds 657 (2016) 655-661.
[22] A. Angel Ezhilarasi, J. Judith Vijaya, K. Kaviyarasu, L. John Kennedy, R.J. Ramalingam, H.A. Al-Lohedan, Journal of Photochemistry and Photobiology B: Biology 180 (2018) 39-50.
[23] X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, M. Maaza, Materials Research Bulletin 97 (2018) 457-465.
[24] H.R. Naika, K. Lingaraju, K. Manjunath, D. Kumar, G. Nagaraju, D. Suresh, H. Nagabhushana, Journal of Taibah University for Science 9 (2015) 7-12.
[25] K. Velsankar, A.K. R.M, P. R, M. V, S. Sudhahar, Journal of Environmental Chemical Engineering 8 (2020) 104123.
[26] E.E. Elemike, D.C. Onwudiwe, A.C. Ekennia, C.U. Sonde, R.C. Ehiri, Molecules 22 (2017) 674.
[27] S. Pourbeyram, J. Abdollahpour, M. Soltanpour, Materials Science and Engineering 94 (019) 850-857.
[28] X. Dong, H. Meg-Jiao, W. Yan-Qui, C. Yuan-Lu, Molecules 24 (2019) 1123.
[29] N. Khand, A. Solangi, S. Ameen, A. Fatima, A. Buledi, A. Mallah, S. Memon, F. Sen, F. Karimi, Y. Orooji, Journal of Food Measurement and Characterization, 15 (2021) 3720-3730.
[30] S. Karakaya, I, Kaya, Polymer 212 (2021) 1-10.