Synthesis and Characterization of Linear/Nonlinear Optical Properties of GO, RGO, RGO-ZNO, and RGO-ZNO-Fe2O4
Subject Areas : Optical PropertiesMohsen EbrahimiNaghani 1 , Mina Neghabi 2 , Mehdi Zadsar 3 , Hossein Abbastabar Ahangar 4
1 - Department of Physics, Faculty of Physics, Islamic Azad University, Najaf Abad Branch, Najaf Abad, Isfahan, Iran
2 - Department of Physics, Faculty of Physics, Islamic Azad University, Najaf Abad Branch, Najaf Abad, Isfahan, Iran
3 - Department of Physics, Faculty of Physics, Islamic Azad University, Najaf Abad Branch, Najaf Abad, Isfahan, Iran
4 - Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Keywords:
Abstract :
[1] T. Kavitha, A.I. Gopalan, K.-P. Lee, S.-Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids, Carbon, 50(2012) 2994-3000.
[2] V. Gupta, T.A. Saleh, Syntheses of carbon nanotube-metal oxides composites; adsorption and photo-degradation, Carbon Nanotubes-From Research to Applications, 17(2011) 295-312.
[3] C. Peng, Y. Xiong, Z. Liu, F. Zhang, E. Ou, J. Qian, et al., Bulk functionalization of graphene using diazonium compounds and amide reaction, Applied surface science, 280(2013) 914-9.
[4] H. Miyaji, Y. Kanemoto, A. Hamamoto, K. Shitomi, E. Nishida, A. Kato, et al., Sustained antibacterial coating with graphene oxide ultrathin film combined with cationic surface-active agents in a wet environment, Scientific reports, 12(2022) 1-13.
[5] C. Li, Z. Cheng, J. Gao, Q. Han, M. Ye, J. Zhang, et al., Oxidation degree of graphene reflected by morphology-tailored zno growth, Carbon, 107(2016) 583-92.
[6] T. Giannakopoulou, N. Todorova, A. Erotokritaki, N. Plakantonaki, A. Tsetsekou, C. Trapalis, Electrochemically deposited graphene oxide thin film supercapacitors: Comparing liquid and solid electrolytes, Applied Surface Science, 528(2020) 146801.
[7] R. Jain, A. Sinha, Graphene-zinc oxide nanorods nanocomposite based sensor for voltammetric quantification of tizanidine in solubilized system, Applied Surface Science, 369(2016) 151-8.
[8] H. Wördenweber, S. Karthäuser, A. Grundmann, Z. Wang, S. Aussen, H. Kalisch, et al., Atomically resolved electronic properties in single layer graphene on α-Al2O3 (0001) by chemical vapor deposition, Scientific Reports, 12(2022) 18743.
[9] N. Hameed, L.F. Dumée, F.-M. Allioux, M. Reghat, J.S. Church, M. Naebe, et al., Graphene based room temperature flexible nanocomposites from permanently cross-linked networks, Scientific Reports, 8(2018) 1-8.
[10] Y. Li, G. Zhu, K. Zhou, P. Meng, G. Wang, Evaluation of graphene/crosslinked polyethylene for potential high voltage direct current cable insulation applications, Scientific Reports, 11(2021) 1-8.
[11] K. Sodeinde, S. Olusanya, O. Lawal, M. Sriariyanun, A. Adediran, Enhanced adsorptional-photocatalytic degradation of chloramphenicol by reduced graphene oxide-zinc oxide nanocomposite, Scientific Reports, 12(2022) 1-13.
[12] C.S. Rout, A. Govindaraj, Graphene-based electrochemical supercapacitors.
[13] B.-M. Kim, H.-Y. Kim, S.-W. Hong, W.H. Choi, Y.-W. Ju, J. Shin, Structurally distorted perovskite La0. 8Sr0. 2Mn0. 5Co0. 5O3-δ by graphene nanoplatelet and their composite for supercapacitors with enhanced stability, Scientific reports, 12(2022) 1-8.
[14] K.-H. Choi, H.-J. Nam, J.-A. Jeong, S.-W. Cho, H.-K. Kim, J.-W. Kang, et al., Highly flexible and transparent In Zn Sn O x∕ Ag∕ In Zn Sn O x multilayer electrode for flexible organic light emitting diodes, Applied Physics Letters, 92(2008) 194.
[15] S.H. Raad, Z. Atlasbaf, Solar cell design using graphene-based hollow nano-pillars, Scientific Reports, 11(2021) 1-8.
[16] J.-K. Chang, Y.-Y. Huang, D.-L. Lin, J.-I. Tau, T.-H. Chen, M.-H. Chen, Solution-processed, semitransparent organic photovoltaics integrated with solution-doped graphene electrodes, Scientific Reports, 10(2020) 1-12.
[17] G. Williams, ACS Nano, 2008, 2, 1487;(e) B. Seger and PV Kamat, J Phys Chem C, 113(2009) 7990.
[18] S. Srikanth, S. Dudala, U. Jayapiriya, J.M. Mohan, S. Raut, S.K. Dubey, et al., Droplet-based lab-on-chip platform integrated with laser ablated graphene heaters to synthesize gold nanoparticles for electrochemical sensing and fuel cell applications, Scientific reports, 11(2021) 1-12.
[19] A.H. Mashhadzadeh, M.G. Ahangari, A. Dadrasi, M. Fathalian, Theoretical studies on the mechanical and electronic properties of 2D and 3D structures of beryllium-oxide graphene and graphene nanobud, Applied Surface Science, 476(2019) 36-48.
[20] Y.-S. Chang, F.-K. Chen, D.-C. Tsai, B.-H. Kuo, F.-S. Shieu, N-doped reduced graphene oxide for room-temperature NO gas sensors, Scientific Reports, 11(2021) 1-12.
[21] T.T. Baby, S. Ramaprabhu, Investigation of thermal and electrical conductivity of graphene based nanofluids, Journal of Applied Physics, 108(2010) 124308.
[22] H. Tao, O.A. Alawi, O.A. Hussein, W. Ahmed, A.H. Abdelrazek, R.Z. Homod, et al., Thermohydraulic analysis of covalent and noncovalent functionalized graphene nanoplatelets in circular tube fitted with turbulators, Scientific Reports, 12(2022) 1-24.
[32] A. Wang, L. Long, W. Zhao, Y. Song, M.G. Humphrey, M.P. Cifuentes, et al., Increased optical nonlinearities of graphene nanohybrids covalently functionalized by axially-coordinated porphyrins, Carbon, 53(2013) 327-38.
[23] P. Khalili, M. Farahmandjou, Study of α-Fe₂O₃@ ZnO nanoleaves: Morphological and optical study, Materials Engineering Research, 2 (1), (2020)118-124.
[24] H. Zhao, J. Yang, L. Wang, C. Tian, B. Jiang, H. Fu, Fabrication of a palladium nanoparticle/graphene nanosheet hybrid via sacrifice of a copper template and its application in catalytic oxidation of formic acid, Chemical Communications, 47(2011) 2014-6.
[25] B. Ramaraju, C.-H. Li, S. Prakash, C.-C. Chen, Metal–organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications, Chemical Communications, 52(2016) 946-9.
[26] B. Anasori, M. Beidaghi, Y. Gogotsi, Graphene–transition metal oxide hybrid materials, Mater Today, 17(2014) 253-4.
[27] Z. Wu, Zhou GM Yin L.-C. Ren WC Li F. Cheng H.-M, Nano Energy, 1(2012) 107-31.
[28] X. Fang, J. Liu, J. Wang, H. Zhao, H. Ren, Z. Li, Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ ZnO composites for ultrasensitive electrochemical detection of tumor biomarker, Biosensors and Bioelectronics, 97(2017) 218-25.
[29] . Benaboud, M. Zaabat, M. Aida, B. Boudine, S. Benzitouni, T. Saidani, Fe2O4/ZnO-nanowires synthesis by dip-coating for Orange II-dye photodegradation, Optik, 144 (2017), 397-405.
[30] K. Anand, O. Singh, M.P. Singh, J. Kaur, R.C. Singh, Hydrogen sensor based on graphene/ZnO nanocomposite, Sensors and Actuators B: Chemical, 195(2014) 409-15.
[31] S. Xiong, S. Ye, X. Hu, F. Xie, Electrochemical detection of ultra-trace Cu (II) and interaction mechanism analysis between amine-groups functionalized CoFe2O4/reduced graphene oxide composites and metal ion, Electrochimica Acta, 217(2016) 24-33.
[33] C. Xu, X. Wang, J. Zhu, X. Yang, L. Lu, Deposition of Co 3 O 4 nanoparticles onto exfoliated graphite oxide sheets, Journal of Materials Chemistry, 18(2008) 5625-9.
[34] L.I. Hung, C.K. Tsung, W. Huang, P. Yang, Room‐temperature formation of hollow Cu2O nanoparticles, Advanced Materials, 22(2010) 1910-4.
[35] W. Zou, J. Zhu, Y. Sun, X. Wang, Depositing ZnO nanoparticles onto graphene in a polyol system, Materials Chemistry and Physics, 125(2011) 617-20.
[36] X. Wang, H.-F. Wu, Q. Kuang, R.-B. Huang, Z.-X. Xie, L.-S. Zheng, Shape-dependent antibacterial activities of Ag2O polyhedral particles, Langmuir, 26(2010) 2774-8.
[37] X.-L. Wu, L. Wang, C.-L. Chen, A.-W. Xu, X.-K. Wang, Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal, Journal of Materials Chemistry, 21(2011) 17353-9.
[38] M.S. Ghorashi, H.R. Madaah Hosseini, E. Mohajerani, M. Pedroni, R. Taheri Ghahrizjani, Enhanced TiO2 broadband photocatalytic activity based on very small upconversion nanosystems, The Journal of Physical Chemistry C, 125(2021) 13788-801.
[39] R.T. Ghahrizjani, M.H. Yousefi, Effects of three seeding methods on optimization of temperature, concentration and reaction time on optical properties during growth ZnO nanorods, Superlattices and Microstructures, 112(2017) 10-9.
[40] A. Lakshmanan, P. Surendran, S. S. Priya, K. Balakrishnan, P. Geetha, P. Rameshkumar, T. A. Hegde, G. Vinitha, K. Kannan, Investigations on structural, optical, dielectric, electronic polarizability, Z-scan and antibacterial properties of Ni/Zn/Fe2O4 nanoparticles fabricated by microwave-assisted combustion method, Journal of Photochemistry and Photobiology A: Chemistry, 402(2020), 112794.
[41] M.-T. Chen, M.-P. Lu, Y.-J. Wu, J. Song, C.-Y. Lee, M.-Y. Lu, et al., Near UV LEDs made with in situ doped pn homojunction ZnO nanowire arrays, Nano letters, 10(2010) 4387-93.
[42] M. McCune, W. Zhang, Y. Deng, High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with “caterpillar-like” structure, Nano letters, 12(2012) 3656-62.
[43] W. Zhou, J. Zhang, Y. Liu, X. Li, X. Niu, Z. Song, et al., Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography, Applied Surface Science, 255(2008) 2885-9.
[44] M. Ameri, M. Ghaffarkani, R.T. Ghahrizjani, N. Safari, E. Mohajerani, Phenomenological morphology design of hybrid organic-inorganic perovskite solar cell for high efficiency and less hysteresis, Solar Energy Materials and Solar Cells, 205(2020) 110251.
[45] M. Azadinia, M. Ameri, R.T. Ghahrizjani, M. Fathollahi, Maximizing the performance of single and multijunction MA and lead-free perovskite solar cell, Materials Today Energy, 20(2021) 100647.
[46] R.T. Ghahrizjani, M. Ghafarkani, S. Janghorban, M. Ameri, M. Azadinia, E. Mohajerani, et al., ZnO–SrAl2O4: Eu Nanocomposite-Based Optical Sensors for Luminescence Thermometry, ACS Applied Nano Materials, 4(2021) 9190-9.
[47] A. Amirsalari, A.A. Ziabari, R.T. Ghahrizjani, S.F. Shayesteh, A fundamental study on the effects of nano-silver incorporation on the structure and luminescence properties of color centers in γ′-alumina nanoparticles, Journal of Luminescence, 192(2017) 910-8.
[48] A.R. Sadrolhosseini, E. Ghasami, A. Pirkarimi, S.M. Hamidi, R.T. Ghahrizjani, Highly sensitive surface plasmon resonance sensor for detection of Methylene Blue and Methylene Orange dyes using NiCo-Layered Double Hydroxide, Optics Communications, (2022) 129057.
[49] Y. Hu, J. Zhou, P.H. Yeh, Z. Li, T.Y. Wei, Z.L. Wang, Supersensitive, fast‐response nanowire sensors by using Schottky contacts, Wiley Online Library2010.
[50] K. Wang, M. Li, J. Zhang, H. Lu, Polyacrylonitrile coupled graphite oxide film with improved heat dissipation ability, Carbon, 144(2019) 249-58.
[51] W. Gao, The chemistry of graphene oxide, Graphene oxide, Springer2015, pp. 61-95.
[52] U. Hofmann, R. Holst, Über die Säurenatur und die Methylierung von Graphitoxyd, Berichte der deutschen chemischen Gesellschaft (A and B Series), 72(1939) 754-71.
[53] B. Jaleh, A. Jabbari, Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films, Applied Surface Science, 320(2014) 339-47.
[54] D.C. Marcano, D.V. Kosynkin, Berlin, JM Sinitskii, A, Sun, Z Slesarev, A Alemany, LB Lu and JM Tour Improved synthesis of graphene oxide Acs Nano, 4(2010) 4806.
[55] D.A. Jasim, N. Lozano, K. Kostarelos, Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology, 2D Materials, 3(2016) 014006.
[56] P. Sengunthar, K. H. Bhavsar, C. Balasubramanian, and U. S. Joshi, Physical properties and enhanced photocatalytic activity of ZnO-rGO nanocomposites, Applied Physics A, 126, (2020) 1-9.
[57] A. S. Merlano, F. Pérez, R. Cabanzo, E. Mejía, L. M. Hoyos, and Á. Salazar, Chemical and morphological analysis of formation of rGO/ZnO composite obtained by microwave-assisted hydrothermal method., Journal of Physics: Conference Series, 1541(2020), 012015.
[58] E. K. Droepenu, B. S. Wee, S. F. Chin, K. Y. Kok, and M. F. Maligan, Zinc oxide nanoparticles synthesis methods and its effect on morphology: A review, Biointerface Res. Appl. Chem, 12, (2022), 4261-4292, 2022.
[59] T. Srinivasulu, K. Saritha, and K. R. Reddy, Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis, Modern Electronic Materials, 3, (2017), 76-85, 2017.
[60] W. Wang, S. Guo, D. Zhang, and Z. Yang, One-pot hydrothermal synthesis of reduced graphene oxide/zinc ferrite nanohybrids and its catalytic activity on the thermal decomposition of ammonium perchlorate, Journal of Saudi Chemical Society,.23, (2019), 133-140, 2019.
[61] F. Fajaroh, I. D. Susilowati, and A. Nur, Synthesis of ZnFe2O4 nanoparticles with PEG 6000 and their potential application for adsorbent, in IOP Conference Series: Materials Science and Engineering, 515, (2019), 012049.
[62] M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chemistry of materials, 19(2007) 4396-404.
[63] Z. Luo, Y. Lu, L.A. Somers, ATC Johnson―High yield preparation of macroscopic graphen oxide membranes‖, J Am Chem Soc, 131(2009) 898-9.
[64] P. Khanra, T. Kuila, N. Kim, S. Bae, Yu D sheng, Lee JH, Simultaneous bio-functionalization and reduction of graphene oxide by baker’s yeast Chem Eng J, 183(2012) 526-33.
[65] M. Wang, G. Tan, H. Ren, A. Xia, Y. Liu, Direct double Z-scheme Og-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity, Applied Surface Science, 492(2019) 690-702.
[66] T. Kuila, Saswata Bose, Partha Khanra, Ananta Kumar Mishra, Nam Hoon Kim, and Joong Hee Lee, Biosensors and Bioelectronics, 26(2011) 4637-48.
[67] G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics, Advanced materials, 22(2010) 2392-415.
[68] C. Rodwihok, S. Choopun, P. Ruankham, A. Gardchareon, S. Phadungdhitidhada, D. Wongratanaphisan, UV sensing properties of ZnO nanowires/nanorods, Applied Surface Science, 477(2019) 159-65.
[69] R. Kubo, Electronic properties of metallic fine particles. I, Journal of the Physical Society of Japan, 17(1962) 975-86.
[70] S. Nadeem, M. Bukhari, M. Javed, S. Iqbal, M. N. Ahmad, H. Alrbyawi, M. M. Al-Anazy, E. B. Elkaeed, H. Hegazy, M. A. Qayyum, Cation Incorporation and Synergistic Effects on the Characteristics of Sulfur-Doped Manganese Ferrites S@ Mn (Fe2O4) Nanoparticles for Boosted Sunlight-Driven Photocatalysis. Molecules, 27 (22), (2022), 7677.
[71] S. Perumbilavil, K. Sridharan, D. Koushik, P. Sankar, V.M. Pillai, R. Philip, Ultrafast and short pulse optical nonlinearity in isolated, sparingly sulfonated water soluble graphene, Carbon, 111(2017) 283-90.
[72] W. Song, C. He, W. Zhang, Y. Gao, Y. Yang, Y. Wu, et al., Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine, Carbon, 77(2014) 1020-30.
[73] P.-l. Li, Y.-h. Wang, M. Shang, L.-f. Wu, X.-X. Yu, Enhanced optical limiting properties of graphene oxide-ZnS nanoparticles composites, Carbon, 159(2020) 1-8.