Influence of Withdrawal Rate on As-Cast Microstructure and Stress-Rupture Life of Directionally Solidified Rene80 Superalloy
Subject Areas : Superalloyssobhan Rajabi nejad 1 , Masumeh seifollahi 2 , seyed mahdi Abbasi 3 , Seyed Mahdi Ghazi mirsaeed 4
1 - Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran.
2 - Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran.
3 - Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran.
4 - Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran.
Keywords:
Abstract :
[1] R. C. Reed. The superalloys: fundamentals and applications. Cambridge: Cambridge university press; 2008.
[2] C. Yang, Y. Xu, H. Nie, “Effects of heat treatments on the microstructure and mechanical properties of Rene 80”, Mater. Des., Vol. 43, 2013, pp. 66–73.
[3] A. Ohtomo, Y. Saiga, “Directional solidification of Rene’ 80”, Jpn. Inst. Met. Trans., Vol 17, 1976, pp 323–329.
[4] H. Zhang, O. A. Ojo. J. Mater. Sci. “TEM analysis of Cr–Mo–W–B phase in a DS nickel based superalloy”, Vol. 43, 2008, pp. 6024–6028.
[5] T. Goswami, H. Hänninen, “Dwell effects on high temperature fatigue behavior –. Part I.”, Mater. Des., Vol.22, 2001, pp. 199–215.
[6] R. K. Sidhu, O. A. Ojo, M. C. Chaturvedi, “Sub-solidus melting of directionally solidified Rene 80 superalloy during solution heat treatment”, J. Mater. Sci., Vol. 43, 2008, pp. 3612–3617.
[7] A. Szczotok, B. Chmiela, “Effect of Heat Treatment on Chemical Segregation in CMSX-4 Nickel-Base Superalloy”, J. Mater. Eng. Perform., Vol. 23, 2014, pp. 2739–2747.
[8] L. Kunz, P. Lukáš, R. Konečná, “Casting defects and high temperature fatigue life of IN713LC superalloy”, Int. J. Fatigue., Vol. 41, 2012, pp. 47–51.
[9] Q. Yue, L. Liu, W. Yang, “Influence of withdrawal rate on the porosity in a third generation Ni based superalloy”, Prog. Nat. Sci.: Mater. Int., Vol. 61, 2017, pp. 236–243.
[10] B. S. Bokstein, A. I. Epishin, T. Link, “Model for the porosity growth in single crystal nickel base superalloys during homogenization”, Scr. Mater., Vol. 57, 2007, pp. 801–804.
[11] T. Link, S. Zabler, A. Epishin , “Synchrotron tomography of porosity in single crystal nickel base superalloys”, Mater. Sci. Eng., Vol. 425A, 2006, pp. 47–54.
[12] E. Bachelet, G. Lesoult, “Quality of castings of superalloys. In: High Temperature Alloys for Gas Turbines”, Liege, Belgium, 1978, pp. 665-699.
[13] S. Roskosz, M. Staszewski, A. Cwajna. “A complex procedure for describing porosity in precision cast elements of aircraft engines made of MAR-M 247 and MAR-M 509 superalloys”, J. Mater. charact., Vol. 56, 2006, pp.405–413.
[14] J. Zhang, J. Li, T. Jin, “Effect of solidification parameters on the microstructure and creep property of a single crystal Ni base superalloy”, J. Mater., Vol. 26, 2010, pp. 889–895.
[15] G. Sifeng , L. Lin , X. Yiku , “Influence of processing parameters on microstructure during investment casting of nickel base single crystal superalloy DD3”, China Foundry, Vol. 9, 2012, pp.159–164.
[16] M. M. Zou, J. Zhang, J. G. Li, “Effect of melt overheating history on the microstructure of Ni-Base single crystal superalloy”, Adv. Mater. Res., Vol, 217, 2011, 692–696.
[17] G. Liu, L. Liu, C. Ai, “Influence of withdrawal rate on the microstructure of Ni-base single-crystal superalloys containing Re and Ru”, J. Alloys Compd., Vol. 509, 2011, pp. 5866–5872.
[18] J. D. Hunt, “Cellular and primary dendrite spacing. In: Solidification and Casting of Metals”, Sheffield, England, 1977, pp. 3-9.
[19] W. Kurz, D. J. Fisher, “Dendrite growth at the limit of stability”, Acta Metall., Vol 29, 1981, pp. 11–20.
[20] R. Trivedi, “Interdendritic spacing: Part II. A comparison of theory and experiment”, Metall. Mater. Trans., Vol. 15A, 1984, pp. 977–982.
[21] T. Z. Kattamis, M. C. Flemings, “ Dendrite morphology, micro-segregation, and homogenization of low-alloy steel”, Transactions of the Metallurgical Society of AIME, Vol 233,1965, pp. 992-999.
[22] L. G. Peterson, “Directional solidification of land based gas. In: ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition” American Society of Mechanical Engineers. 1989, pp. 332-337.
[23] N. Warnken N, “Studies on the solidification path of single crystal superalloys”, J. Phase Equilib. Diffus., Vol. 37, 2016, pp.100–107.
[24] N. D’souza, H. B., Dong, “Solidification path in third-generation Ni-based superalloys with an emphasis on last stage solidification”, Scr. Mater., Vol 56, 2007, pp. 41–44.
[25] A. Heckl, R. Rettig, S. Cenanovic, “Investigation of the final stages of solidification and eutectic phase formation in Re and Ru containing nickel-base superalloys” J. Cryst. Growth., Vol. 312, 2010, pp.2137–2144.
[26] Porter DA, Easterling KE, Sherif M. “Phase Transformations in Metals and Alloys”. United States: CRC press; 2009.
[27] P. Shewmon, “Diffusion in solids”, Springer, 2016.
[28] Y. G. Nakagava, A. Ohtomo and Y. Saiga, “Directional solidification of Rene 80”, Trans. Japan Institute Met., Vol. 17, pp. 323-329, 1976.