Investigating the Effects of Boron and Zirconium on the High-Temperature Fatigue Behavior of Nimonic 105 Super Alloy
Subject Areas : Superalloys
Zahra Asghary
1
,
Masumeh Seifollahi
2
,
Maryam Morakabati
3
,
Seyed Mahdi Abbasi
4
1 - Phd Researcher, Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology,Tehran, Iran.
2 - Assistant Professor, Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology,Tehran, Iran
3 - Associate professor, Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology,Tehran, Iran.
4 - Professor, Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology,Tehran, Iran.
Keywords:
Abstract :
[1] M. Pollock Tresa, Sammy T. "Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties." J. propulsion power, Vol. 22, 2006, pp. 361-374.
[2] V. Seetharaman, K. Bhanu Sankara Rao, D. Sundararaman, P. Rodriguez. "Precipitation and tensile deformation behaviour of a nimonic 105 superalloy." Acta Metall., Vol. 35, 1987, pp. 565-575.
[3] N. Srinivasa, Y. V. Prasad. "Hot working characteristics of nimonic 75, 80A and 90 superalloys: a comparison using processing maps." J. Mat. Pro. Tech., Vol. 51, 1995, pp. 171-192.
[4] Y. Xu, C. Yang, X. Xiao, X. Cao, G. Jia, Z. Shen. "Strengthening behavior of Al and Ti elements at room temperature and high temperature in modified Nimonic 80A." Mat. Chem. Phys., Vol. 134, 2012, pp. 706-715.
[5] H. S. Jeong, J. R. Cho, H. C. Park. "Microstructure prediction of Nimonic 80A for large exhaust valve during hot closed die forging." Vol. 162, 2005, pp. 504-511.
[6] J. Dahal, K. Maciejewski, H. Ghonem. "Loading frequency and microstructure interactions in intergranular fatigue crack growth in a disk Ni-based superalloy." Int. J. Fat., Vol. 57, 2013, pp. 93-102.
[7] K. Obrtlík, M. Petrenec, J. Man, J. Polák, K. Hrbáček. "Isothermal fatigue behavior of cast superalloy Inconel 792-5A at 23 and 900 C." J. Mat. Sci., Vol.44, 2009, pp. 3305-3314.
[8] A. Bradley, N. Jayaraman, S. D. Antolovich. "A study of fatigue damage mechanisms in Waspaloy from 25 to 800 C." Mat. Sci. Eng., Vol. 66, 1984, pp. 151-166.
[9] S. A. Hosseini, S. M. Abbasi, K. Zangeneh Madar. "The Effect of Boron and Zirconium on the Structure and Tensile Properties of the Cast Nickel-Based Superalloy ATI 718Plus." Journal of Mat. Eng. Perform., Vol. 27, 2018, pp. 2815-2826.
[10] H. R. Jhansale, "A new parameter for the hysteretic stress-strain behavior of metals." J. Engineering Mate. Tech., Vol. 97, 1975, pp. 33-38.
[11] D. S. Antolovich, S. Liu, R. Baur. "Low cycle fatigue behavior of René 80 at elevated temperature." Metall. Trans. A, Vol. 12, 1981, pp. 473-481.
[12] S. K. Hwang, H. N. Lee, B. H. Yoon. "Mechanism of cyclic softening and fracture of a Ni-Base γ′-Strengthened alloy under low-Cycle fatigue." Metall. Trans. A, Vol. 20, 1989, pp. 2793-2801.
[13] G. R. Romanoski, S. D. Antolovich, R. M. Pelloux. "A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue." In Low Cycle Fatigue. ASTM International, 1988.
[14] K. S. Prasad, P. Ghosal, V. Kumar. "Simultaneous creep–fatigue damage accumulation of forged turbine disc of IN 718 superalloy." Mater. Sci. Eng., pp. A, Vol. 572, 2013, pp. 1-7.
[15] S. D. Antolovich, E. Rosa, A. Pineau. "Low cycle fatigue of René 77 at elevated temperatures." Mat. Sci. Eng., Vol. 47, 1981, pp. 47-57.
[16] G. John, T. P. Gabb, R. V. Miner. "Fatigue crack propagation of nickel-base superalloys at 650 C." In Low Cycle Fatigue. ASTM International, 1988.
[17] L. Xiao, D. L. Chen, M. C. Chaturvedi. "Effect of boron on fatigue crack growth behavior in superalloy IN 718 at RT and 650 C." Mat. Sci. Eng. A, Vol. 428, 2006, pp. 1-11.
[18] L. Xiao, M. C. Chaturvedi, D. L. Chen. "Effect of boron on the low-cycle fatigue behavior and deformation structure of INCONEL 718 at 650 C." Metall. Mater. Trans. A, Vol. 35, 2004, pp. 3477-3487.
[19] L. Xiao, M. C. Chaturvedi, D. L. Chen. "Effect of boron on the low-cycle fatigue behavior and deformation structure of INCONEL 718 at 650 C." Metall. Mater. Trans. A, Vol. 35, 2004, pp. 3477-3487.
[20] L. Xiao, M. C. Chaturvedi, D. L. Chen. "Low-cycle fatigue behavior of INCONEL 718 superalloy with different concentrations of boron at room temperature." Metall. Mater. Trans. A, Vol. 36, 2005, pp. 2671-2684.
[21] W.J. Pennington, "Improvement in High-Temperature Alloys by Boron and Zirconium." Metal Progr. Vol. 73, 1958.
[22] H. Huang, C. Koo. "Effect of zirconium on microstructure and mechanical properties of cast fine-grain CM 247 LC superalloy." Metall. Mater. Trans. A, Vol. 45, 2004, pp. 554-561.
[23] B. C. Yan, J. Zhang, L. H. Lou. "Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy." Mat. Sci. Eng. A, Vol. 474, 2008, pp. 39-47.
[24] Y. Tsai, S. Wang, H. Bor, Y. Hsu. "Effects of Zr addition on the microstructure and mechanical behavior of a fine-grained nickel-based superalloy at elevated temperatures." Mat. Sci. Eng. A, Vol. 607, 2014, pp. 294-301.
[25] K. C. Antony, J. F. Radavich. "Solute effects of boron and zirconium on microporosity." In Proceedings of The Third International Symposium, Claitor Publishing. 1976.
[26] Z. Asqary, S.M. Abbasi, M. Seifollahi, M. Morakabati, "The effect of boron and zirconium on the microstructure and tensile properties of Nimonic 105 superalloy ", Mater. Res. Express, Vol. 6, 2019, pp. 1-11.
[27] M. Stucke, T. Nicholas, M. Khobaib, B. Majumdar. "Environmental aspects in creep crack growth in a nickel base superalloy." In Fracture 84, Pergamon, 1984, pp. 3967-3975.
[28] L. Wang, S. Wang, X. Song, Y. Liu, G. Xu. "Effects of precipitated phases on the crack propagation behaviour of a Ni-based superalloy." Int. J. Fatigue, Vol. 62, 2014, pp. 210-216.
[29] S.K. Hwang, H.N. Lee, B.H. Yoon. "Mechanism of cyclic softening and fracture of an Ni-Base γ′-Strengthened alloy under low-Cycle fatigue." Metall. Trans. A, Vol. 20, 1989, pp. 2793-2801.
[30] G. A. Osinkolu, G. Onofrio, M. Marchionni. "Fatigue crack growth in polycrystalline IN 718 superalloy." Mat. Sci. Eng. A, Vol. 356, 2003, pp. 425-433.
[31] H. A. Roth, C. L. Davis, R. C. Thomson. "Modeling solid solution strengthening in nickel alloys." Metall. Mater. Trans. A, Vol. 28, 1997, pp. 1329-1335.
[32] D. Krueger, S. D. Antolovich, H. R. Van Stone. "Effects of grain size and precipitate size on the fatigue crack growth behavior of alloy 718 at 427 C." Metall. Trans.s A, Vol. 18, 1987, pp. 1431-1449.
[33] T. Fedorova, J. Rösler, B. Gehrmann, J. Klöwer. "Influence of B and Zr on microstructure and mechanical properties of alloy 718." In International Symposium Superalloy 718 Derivatives, 2010, pp. 836-846.
[34] H. Ghonem, D. Zheng. "Depth of intergranular oxygen diffusion during environment-dependent fatigue crack growth in alloy 718." Mat. Sci. Eng. A, Vol. 1501992, pp. 151-160.