The Effect of Morphology of SOFC Layers Made by 3D Printer on the Electrochemical Properties of the Cell
Subject Areas : Materials synthesis and charachterizationKeyvan Mirzaee Fashalameh 1 , Zahra Sadeghian 2 , Ramin Ebrahimi 3
1 - 1 Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran
2 Department of Engineering, payam Noor University (PNU), Tehran, Iran
2 - Research Institute of Petroleum Industry (RIPI), Tehran, Iran
3 - Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran
Keywords:
Abstract :
[1] H. Buchkremer, U. Diekmann, D. Stöver, “Component Manufacturing and Stack Integration of Anode-supported Planar Sofc System”. Proceedings of the Second European Solid Oxide Fuel Cell Forum, Vol. 1, 1996, pp. 221-228.
[2] H. O, K. Nozawa, “Development of Highly Efficient Planar Solid Oxide Fuel Cells”, Special Feature, vol. 6, 2008, pp. 680-690
[3] J. H. Song, S.-I. Park, J.-H. Lee, H.-S. Kim, “Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC”, Journal of materials processing technology, vol. 198, 2008, pp. 414-418,
[4] Kim. S. D, Lee. J. J. Moon, H. Hyun, S. H. Moon, J. Kim. J, “Effects of Anode and Electrolyte Microstructures on Performance of Solid Oxide Fuel Cells”, Journal of Power Sources, vol. 169, 2007, pp. 265-270.
[5] Pierre, A. C, Introduction to Sol-gel Processing, Springer, New York, 1998.
[6] R. Mücke, “Introduction to SOFC Technologies Manufacturing of SOFCs”, Joint European Summer School for Fuel Cell and Hydrogen Technology Viterbo, Italy, 2011,198.
[7] S. Y. Park, C. W. Na, J. H. Ahn, R. H. Song, J. H. Lee, “Preparation of highly porous NiO–gadolinium-doped ceria nano-composite powders by one-pot glycine nitrate process for anode-supported tubular solid oxide fuel cells”, Journal of the Asian Ceramic Societies, vol. 2, 2014, pp. 339-346.
[8] J. C. Ruiz-Morales, A. Taranco´n, J. Canales-Va´zquez, J. Me´ndez-Ramos, L. Herna´ndez-Afonso, P. Acosta-Mora, J. R. Marı ´n Ruedac and R. Ferna´ndez-Gonza´leza, “Three dimensional printing of components and functional devices for energy and environmental applications”, Energy & Environmental Science, Vol. 10, 2017, pp. 846-860
[9] M. M. Torrell, P. Leone, A. Tarancón, “Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications” Journal of the European Ceramic Society, Vol. 39, 2019, pp. 9-16.
[10] H. Itoh, T. Yamamoto, M. Mori, T. Horita, N. Sakai, H. Yokokawa, et al, “Configurational and electrical behavior of Ni‐YSZ cermet with novel microstructure for solid oxide fuel cell anodes”, Journal of the Electrochemical Society, vol. 144, 1997, pp. 641-646.
[11] S. Pratihar, R. N. Basu, S. Mazumder, H. S. Maiti, “Electrical conductivity and microstructure of Ni-YSZ anode prepared by liquid dispersion method”, Electrochemical Society Proceedings, Vol. 1999-19, 1999, pp. 513-521.
[12] J. H. Lee, H. Moon, H. W. Lee, J. Kim, J. D. Kim, K. H. Yoon, “Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni–YSZ cermet”, Solid State Ionics, vol. 148, 2002, pp. 15-26.
[13] D. Medvedev, J. Lyagaeva, G. Vdovin, S. Beresnev, A. Demin and P. Tsiakaras, “A tape calendering method as an effective way for the preparation of proton ceramic fuel cells with enhanced performance”, Electrochimica Acta, vol. 210, 2016, pp. 681-688.
[14] Dehua, D. Jianfeng, G. Xingqin, L. Guangyao, Meng, “Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gelcasting”, Journal of Power Sources, Vol. 165, 2007, pp. 217–223.
[15] D. Dong, Y. Huang, X. Zhang, L. He, C. Z. Li, H. W, “Shape forming of ccs with controllable microstructure by drying-free colloidal casting”, Journal of Materials Chemistry, Vol. 19, 2009, 7070–7074.
[16] G. B. Balazs, R. S. Glass, “AC impedance studies of rare earth oxide doped ceria”, Solid State Ionics, vol. 76, 1995, pp. 155-162.
[17] Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda and N. Imanishai, “Electrical conductivity of the ZrO2–Ln2O3 (Ln= lanthanides) system”, Solid State Ionics, vol. 121, 1999, pp. 133-139.
[18] J. P. Viricelle, C. Pijolat, B. Riviere, D. Rotureau, D. Briand, N.F. de Rooij, “Compatibility of screen-printing technology with micro-hotplate for gas sensor and solid oxide micro fuel cell development” Sensors and Actuators. Vol. B 118, 2006, pp. 263–268.
[19] G.N. Almutairi, Y. M. Alyousef, F.S.Alenazey, S. A Alnassar, H. Alsmail, M. Ghouse, “Electrochemical Characteristics of La0.65Sr0.3MnO3 and La0.8Sr0.2MnO3 Nanoceramic Cathode Powders for Intermediate Temperature Solid Oxide Fuel Cell (SOFC) Application”, Int. J. Electrochem. Sci. Vol. 12, 2017, pp. 8148 – 8166.
[20] G. Almutairi1, F. Alenazey,Y. Yousef1, B. Alshammari2, “Alanine Assisted Synthesis and Characterization of La0.65Sr0.3MnO3 (LSM)”, Int. J. Electrochem. Sci. Vol. 12, 2017, pp. 11616 – 11632.
[21] C. Levy, Yu. Zhong, C. Morel, S, Marlina, A. Assisted. “Thermodynamic Stabilities of La2Zr2O7 and SrZrO3 in SOFC and Their Relationship with LSM”, Synthesis Journal of The Electrochemical Society. Vol. 157, 2010, B1597-B1601.
[22] J. Fergus, R. Hui, X. Li, D. P. Wilkinson, J. Zhang, Solid oxide fuel cells: materials properties and performance, CRC press, 2016. Pp. 156.
[23] S. Pratihar, R. N. Basu, S. Mazumder, H. S. Maiti, “Electrical conductivity and microstructure of Ni-YSZ anode prepared by liquid dispersion method”, Electrochemical Society Proceedings, Vol. 1999-19, 1999, pp. 513-521.
[24] Buchkremer, H., Diekmann, U., and Stöver, D, “Component Manufacturing and Stack Integration of Anode-supported Planar Sofc”, System Proceedings of the Second European Solid Oxide Fuel Cell Forum, Vol. 1, 1996, pp. 221-228.
[25] V. M, J. O. Deutschmann, “Modeling of Solid-Oxide Fuel Cells”, Z. Phys. Chem, Vol. 221, pp. 443–478.
[26] H. Tu, X. Liu and Q. Yu, “Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells”, Journal of the Power Sources, vol. 196, 2011, pp. 3109-3113.
[27] M. Irshad, K. Siraj, R. Raza, A. Ali, P. Tiwari, B. Zhu, et al., “A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance”, Applied Sciences, vol. 6, 2016, p. 75.
[28]T. Franco, Z. Ilhan, M. Lang, G. Schiller, P. Szabo, “Investigation of Porous Metallic Substrates for Plasma Sprayed Thin-film Sofcs”, The Electrochemical Society. Vol. 7, 2005, pp. 344-356.
[29] P. Holtappels, U. Stimming, Solid Oxide Fuel Cells (Sofc) in: Handbook of Fuel Cells, John Wiley & Sons, Ltd, New York, 2010, p. 453.
[30] Z.Tang, Y. Xie, H. Hawthorne, D. Ghosh, “Sol–gel Processing of Sr0.5 Sm0.5 CoO3 Film”, Journal of Power Sources, Vol. 157, 2006, pp. 385-388.
[31] C. Xia, Y. Zhang, M. Liu, “Lsm-Gdc Composite Cathodes Derived from a Sol-gel Process Effect of Microstructure on Interfacial Polarization Resistance”, Electrochemical and Solid-state Letters, Vol. 6, 2003, pp. A290-A292.
[32] H. Jinyan, ua. Kongfa, C. X. Huanga, N. A. Xiaobo, D. Chengwei, F. Jiaming, W. W. Sua,b,c, “Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs”, Journal of Membrane Science. Vol. 318, 2014, pp. 445–451.
[33] H. Shimada, E. Takami, K. Takizawa, A. Hagiwara, M. Ihara, “Highly dispersed anodes for solid oxide fuel cells using NiO/YSZ/BZY triple-phase composite powders prepared by spray pyrolysis”, Solid State Ionics. Vol. 193, 2011, pp. 43–51.
[34] H. Liangfa, A. W. Chang, Y. Huang, “Porous Yttria-Stabilized Zirconia Ceramics with Ultra-Low Thermal Conductivity”, Journal of Materials Science, Vol. 45, 2010, Pp. 3242–3246.
[35] W. Bao, Q. Chang, G, Meng. “Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell”, Journal of Membrane Science, Vol. 259, 2005, 103–109.
[36] D. Salehzadeh, M. Torabi, Z. Sadeghian, P. Marashi, “A multiscale-architecture solid oxide fuel cell fabricated by electrophoretic deposition technique” Journal of Alloys and Compounds, Vol. 830, 2020, pp. 1546-1554.
[37] J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta, S. C. Singhal, (1999). Polarization effects in intermediate temperature, anode‐supported solid oxide fuel cells. Journal of the Electrochemical Society. vol. 146, pp. 69-78.
[38] G. B. Jung, T. J. Huang, C.-L. Chang, “Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte”, Journal of Solid State Electrochemistry, Vol. 6, 2002. pp. 225-230.
[39] S. Tao, J. T. Irvine, “A Redox-stable Efficient Anode for Solid-oxide Fuel Cells, Nature Materials. Vol. 2, 2003, pp. 320-323.
[40] T. L. Nguyen, T.Kato, Nozaki, T. Honda, A.Negishi, K. Kato, Y. Iimura, “Application of (Sm0.5Sr0.5) CoO3 as a Cathode Material to (Zr, Sc) O2 Electrolyte with Ceria-Based Interlayers for Reduced-temperature Operation Sofcs”, Journal of the Electrochemical Society, Vol. 153, 2006. pp. A1310-A1316.
[41] Y. Zhang, “Fabrication and Characterisation of Planar and Tubular Solid Oxide Fuel Cell Anodes”, Edinburgh Napier University”, MSc by Research. Vol. 2, 2013, pp. 24-24.
[42] S. Singhal, “Advances in Solid Oxide Fuel Cell Technology”, Solid State Ionics, Vol.135, 2000, pp. 305-313.
[43] H. Rob, W. Zhenwei, Olivera, W. Lars, R. Jasna, J. Sing, Y. Radenka, M. Dave, G. “Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges”, Journal of Power Sources, Vol. 170, Issue 2, 2007, PP. 308-323.
[44] Y. Huang, J. Vohs, R. Gorte, “Sofc Cathodes Prepared by Infiltration with Various LSM Precursors. Electrochemical and Solid-State Letters”, Vol. 9, 2006, pp. A237-A240.
[45] R. Gorte, H. Kim, J. M. Vohs, “Novel Sofc Anodes for the Direct Electrochemical Oxidation of Hydrocarbon” Journal of Power Sources”,Vol. 106, 2002, pp. 10-15.
[46] M. Gross, M. D Vohs, R. J. Gorte, “A Study of Thermal Stability and Methane Tolerance of Cu-based Sofc Anodes with Electrodeposited Co”, Electrochimical Acta. Vol. 52, 2007, pp. 1951-1957.
[47] H. A. Hamedani, M. Baniassadi, M.Khaleel, X. Sun, S. Ahzi, D. Ruch, H. Garmestani, “Microstructure, Property and Processing Relation in Gradient Porous Cathode of Solid Oxide Fuel Cells using Statistical Continuum Mechanics”, Journal of Power Sources, Vol. 196, 2011, pp. 6325-6331.