Polyethylene Glycol Coated NiFe2O4 Nanoparticles Produced by Solution Plasma Method for Biomedical Applications
Subject Areas : Bio MaterialsMasoud Shabani 1 , Ehsan Saebnoori 2 , Ali Hassanzadeh-Tabrizi 3 , Hamid Reza Bakhsheshi-Rad 4
1 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
3 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
4 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
Keywords:
Abstract :
[1] Y. Sharma, V. Srivastava, Comparative studies of removal of Cr (VI) and Ni (II) from aqueous solutions by magnetic nanoparticles, Journal of Chemical & Engineering Data 56(4) (2011) 819-825.
[2] P.L. Hariani, D. Desnelli, F. Fatma, I.P. Rizki, S. Salni, Synthesis and characterization of Fe3O4 nanoparticles modified with polyethylene glycol as antibacterial material, The Journal of Pure and Applied Chemistry Research 7(2) (2018) 122.
[3] S. Sam, A.S. Nesaraj, Preparation of MnFe2O4 nanoceramic particles by soft chemical routes, Int J Appl Sci Eng 9(4) (2011) 223-239.
[4] Y. Prabhu, K.V. Rao, B.S. Kumari, V.S.S. Kumar, T. Pavani, Synthesis of Fe 3 O 4 nanoparticles and its antibacterial application, International Nano Letters 5(2) (2015) 85-92.
[5] R.H. Vignesh, K.V. Sankar, S. Amaresh, Y.S. Lee, R.K. Selvan, Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor, Sensors and Actuators B: Chemical 220 (2015) 50-58.
[6] S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white, Scripta materialia 56(9) (2007) 797-800.
[7] J. Zhu, D. Xiao, J. Li, X. Yang, Y. Wu, Characterization of FeNi3 alloy in Fe–Ni–O system synthesized by citric acid combustion method, Scripta materialia 54(1) (2006) 109-113.
[8] L. Guo, X. Shen, X. Meng, Y. Feng, Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers, Journal of Alloys and Compounds 490(1-2) (2010) 301-306.
[9] S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, M. Rahimi-Nasrabadi, Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb 3+ or Pr 3+ ions in cobalt–nickel ferrite, Journal of Materials Science: Materials in Electronics 30(7) (2019) 6902-6909.
[10] P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Preparation of sheet like polycrystalline NiFe2O4 nanostructure with PVA matrices and their properties, Materials Letters 65(9) (2011) 1438-1440.
[11] M. Shabani, E. Saebnoori, S. Hassanzadeh-tabrizi, H.R. Bakhsheshi-Rad, Novel synthesis of nickel ferrite magnetic nanoparticles by an in‐liquid plasma, Journal of Materials Science: Materials in Electronics 32(8) (2021) 10424-10442.
[12] Y. Toriyabe, S. Watanabe, S. Yatsu, T. Shibayama, T. Mizuno, Controlled formation of metallic nanoballs during plasma electrolysis, Applied physics letters 91(4) (2007) 041501.
[13] S. Samimi-Sedeh, E. Saebnoori, A. Hassanzadeh, An optimization and characterization study on sodium ferrate production by electrochemical method, Journal of Advanced Materials and Processing 7(4) (2019) 3-11.
[14] M. Jalaly, M. Enayati, P. Kameli, F. Karimzadeh, Effect of composition on structural and magnetic properties of nanocrystalline ball milled Ni1− xZnxFe2O4 ferrite, Physica B: Condensed Matter 405(2) (2010) 507-512.
[15] L. Whittig, X‐ray diffraction techniques for mineral identification and mineralogical composition, Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling 9 (1965) 671-698.
[16] K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Studies on the microwave assisted and conventional combustion synthesis of Hibiscus rosa-sinensis plant extract based ZnFe2O4 nanoparticles and their optical and magnetic properties, Ceramics International 42(2) (2016) 2741-2749.
[17] S. Yadav, S. Shinde, A. Kadam, K. Rajpure, Structural, morphological, dielectrical and magnetic properties of Mn substituted cobalt ferrite, Journal of Semiconductors 34(9) (2013) 093002.
[18] P.G. Rasmussen, Far-infrared and Raman spectra ofpseudo-tetrahedral complexes of ethylenedimorpholene, Transition Metal Chemistry 11(11) (1986) 416-418.
[19] Z. Zhou, J. Xue, J. Wang, H. Chan, T. Yu, Z. Shen, NiFe 2 O 4 nanoparticles formed in situ in silica matrix by mechanical activation, Journal of applied physics 91(9) (2002) 6015-6020.
[20] S. Saafan, T. Meaz, E. El-Ghazzawy, M. El Nimr, M. Ayad, M. Bakr, AC and DC conductivity of NiZn ferrite nanoparticles in wet and dry conditions, Journal of magnetism and Magnetic materials 322(16) (2010) 2369-2374.
[21] C.-S. Lin, C.-C. Hwang, T.-H. Huang, G.-P. Wang, C.-H. Peng, Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route, Materials Science and Engineering: B 139(1) (2007) 24-36.
[22] Z.E. Gahrouei, S. Labbaf, A. Kermanpur, Cobalt doped magnetite nanoparticles: Synthesis, characterization, optimization and suitability evaluations for magnetic hyperthermia applications, Physica E: Low-dimensional Systems and Nanostructures 116 (2020) 113759.
[23] M. Lickmichand, C.S. Shaji, N. Valarmathi, A.S. Benjamin, R.A. Kumar, S. Nayak, R. Saraswathy, S. Sumathi, N.A.N. Raj, In vitro biocompatibility and hyperthermia studies on synthesized cobalt ferrite nanoparticles encapsulated with polyethylene glycol for biomedical applications, Materials Today: Proceedings 15 (2019) 252-261