Novel BCP-Bioactive Glass-Akermanite/PCL Composite Scaffold: Physical and Mechanical Behavior, and in Vitro Bioactivity
Subject Areas : Bio MaterialsEbrahim karamian 1 , shakiba saghirzadeh darki 2
1 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 - Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Keywords:
Abstract :
[1] E.M. Christenson, k.S. Aseth, J.J.P. Jeroen, V. D. Beucken, C.K. Chan, B. Ercan, J.A. Jansen, C.T. Laurencin, W.J. Li, R. Murugan, L.S. Nair, S. Ramakrishna, R.S. Tuan, T.J. Webster, A.G. Mikos, “Nanobiomaterials application in orthopedics”, Journal of Orthopedic Research, Vol.25, pp.11-22, 2006.
[2] I. Seiler, J. Johnson, “Iliac crest autogenous bone grafting: donor site complications”, Journal of South Orthopedic Association, Vol.9, pp.91-97, 2000.
[3] D. Hickey, B. Ercan, L. Sun, T. Webster, “Adding MgO nanoparticles to hydroxyapatite – PLLA nanocomposites for improved bone tissue engineering application”, Journal of Acta Biomaterialia, Vol.14, pp.175 – 184, 2014.
[4] V. Guarino, F. Causa, I. Ambrosio, “Bioactive scaffolds for bone and ligament tissue”, Journal of Expert Review of Medical Devices, Vol.4, pp.405-418, 2007.
[5] G. E. Rutkowski, C. A. Miller, S. K. Mallapragada, “Processing of polymer scaffolds: Solvent casting method of tissue engineering”, San Diego, Academic Press, 2002.
[6] K. Whang, K. E. Healy, “Methods in tissue engineering processing of polymer scaffolds freeze – drying”, San Diego, Academic Press, 2002.
[7] F. Schuth, K. S. W. Sing, J. Weitkamp, “Handbook of porous solids”, Wiley – VCH, 2002.
[8] D. Bellucci, A. Sola, V. Cannillo, “A revised replication method for bioceramic scaffolds”, Bioceramics Ashdin Publishing Bioceramics Development and Applications, Vol.1, 2011.
[9] I. Sopyan, M. Mel, S. Ramesh, K.A. Khalid, “Porous hydroxyapatite for artificial bone applications”, Journal of Science Technology of Advanced Materials, Vol.8, pp.116 – 123, 2008.
[10] J.R. Jones, L.M. Ehrenfried, L.L. Hench, “Optimizing bioactive glass scaffolds for bone tissue engineering”, Journal of Biomaterials, Vol.27, pp.964 – 973, 2006.
[11] R.K. Nalla, J.H. Kinnej, R.O., Ritchi, “Mechanistic fracture criteria for the failure of human cortical bone”, Journal of Nature Materials, Vol.2, pp.164-168, 2003.
[12] M. Parvizifard, S. Karbasi, H. Salehi, S. Soleymani Eil Bakhtiari, Evaluation of physical, mechanical and biological properties of biogalss/titania scaffold coated with poly(3-hydroxybutyrate)-chitosan for bone tissue engineering, Mat. Tech: Adv.Perform.Mat., http://doi.org/10.1080/10667857.2019.1658169.
[13] S.A. Mali, K.C. Nune, R.D.K. Misra, Biomimetic nanostructured hydroxyapatite coatings on metallic implant materials, Mat. Tech: Adv. Perform. Mat. 31 (2016) 1-9.
[14] C. Bao, M. Chang, L. Qin, Y. Fan, E.Y. Teo, D. Sandikin, M. Choolani, J. K.Y. Chan, Effects of tricalcium phosphate in polycaprolactone scaffold for mesenchymal stem cell-based bone tissue engineering, Mat. Tech: Adv. Perform. Mat. 34 (2019) 361-367.
[15] S. Keikhaei, Z. Mohammadalizadeh, S. Karbasi, A. Salimi, Evaluation of the effects of Beta-tricalcium phosphate on physical, mechanical and biological properties of poly(3-hydroxybutyrate) / chitosan electrospun scaffold for cartilage tissue engineering applications, Mat. Tech: Adv. Perform. Mat. 34 (2019) 615-625.
[16] R. Iron, M. Mehdikhani, E. Naghszargar, S. Karbasi, D. Semnani, Effects of nano-bioactive glass on structural, mechanical and bioactivity properties of poly (3-hydroxybutyrate) electrospun for bone tissue engineering, Mat. Tech: Adv. Perform. Mat. 34 (2019) 540-548.
[17] Khajeh – Sharafabadi A, et.al. A novel and economical route for synthesizing akermanite (Ca2MgSi2O7) nano – bioceramic. J Mater SCi Eng C. http:// dx.doi.org/10.1016/j. msec. 2016.11.021.
[18] Choudhary R, et.al. In vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol-gel combustion method. J Mater Sci Eng C. 2016; 68: 89-100.
[19]A.K. Mohanty, M. Mirsa, G. Hinrichsen, “Biofibers, biodegradable polymers and biocomposites: an overview”, Journal of Macromolecules Materials Engineering, Vol.276, pp.1-24, 2000.
[20] J.M. Anderson, M.S. Shive, “Biodegradation and biocompatibility of PLA and PLGA microspheres”, Journal of. Advanced Drug Delivery Reviews, Vol.64, pp.72-82, 2012.
[21] T.K. Dash, V. Badireenath Konkimalla, “Polycaprolactone based formulations for drug delivery and tissue engineering: A review”, Journal of Controlled Release, Vol.158, pp.15-33, 2012.
[22]L.C. Gerhardt, A.R. Boccaccini, “Bioactive glass and glass-ceramic scaffolds for bone tissue engineering”, Journal of Materials Science, Vol.3, pp.3867-3910, 2010.
[23]A. Najafinezhad, M. Abdellahi, H. Ghayour, A. Soheily, A. Chami, A. Khandan, “A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics”, Journal of Materials Science Engineering C, Vol.72, pp.259 – 267, 2017.
[24] A. Sionkowska, J. Kozlowska, “Properties and modification of porous 3 – D collagen / hydroxyapatite composites”, International Journal of Biological Macromolecules, Vol.52, pp.250 – 259, 2013.
[25] T. Kokubo, H.Takadama, “How useful is SBF in predicting in vivo bone bioactivity?”, J. Biomaterials, Vol.27, 2907-2915, 2006.
[26] H. Ghomi, M. Jaberzadeh, M.H. Fathi, “Novel fabrication of forsterite scaffold with improved mechanical properties”, Journal of Alloys and Compounds, Vol.509, pp.63-68, 2011.
[27] M.H. Fathi, M. Kharaziha, “Two-step sintering of dense, nanostructural forsterite”, Journal of Materials Letters, Vol.63, pp.1455-1458, 2009.
[28] Y.C. Lim, J. Johnson, Z. Fei, Y. Wu, D.F. Farson, J.J. Lannutti, H.W. Choi, L. Lee, “Micropatterning and Characterization of electrospun poly (epsilon – caprolactone)/ gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications”, Journal of Biotechnology Bioengineering, Vol.108, pp.116126, 2011.
[29] L. Ghasemi – Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr – Esfahani, S. Ramakrishna, “Bio – functionalized PCL nanofibrous scaffold for nerve tissue engineering”, Journal of Materials Science and Engineering C, Vol.30, pp.1129-1136, 2010.
[30] C. Vitale – Brovarone, M. Miola, C. Balagna, E. Verne, “3D – glass – ceramic scaffolds with antibacterial properties for bone grafting”, Journal of Chemical Engineering, Vol.137, pp.129 – 136, 2008.
[31] C.V. Brovarone, E. Verne, P.F. Appendino, “Macro-porous bioactive glass – ceramic scaffolds for tissue engineering”, Journal of Materials Science: Materials in Medicine, Vol.17, pp.1069 – 1078, 2006.
[32] D.R. Carter, W.C. Mayes, “Bone compressive strength: the influence of density and strain rate”, Journal of Science, Vol.194, pp.1174-1176, 1976. [33] L.L. Hench, J. Wilson, “An introduction to Bioceramics”, world scientific, publishing, Co LTd, London, 1993.