Modelling Dependency of the Steady-State Grain Size on the Stacking Fault Energy in Severely Plastic Deformed Materials
Subject Areas : Severe Plastic DefeormationMaryam Bahmanpour 1 , Majid Abdellahi 2
1 - Department of Mathematics, Islamic Azad University, Isfahan (khorasgan) Branch, Isfahan, Iran
2 - Advanced Materials Research Center, Faculty of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Keywords:
Abstract :
[1] S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, et al., Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equalchannel angular pressing, Acta Mater. 57 (2009) 1586–1601.
[2] Mohamed FA. A dislocation model for the minimum grain size obtainable by milling. Acta Mater 2003;51:4107–19.
[3] Parvin H, Kazeminezhad M, Dependency Modeling of steady state grain size on the stacking fault energy through severe plastic deformation. Mater Let, http://dx.doi.org/10.1016/j.matlet.2015.07.041
[4] Mohamed FA. Correlation between the behavior of nanocrystalline HCP metals and the dislocation model for the minimum grain size obtainable by milling. Mater Sci Eng A 2010;527(9):2157-62.
[5] Edalati K, Akama D, Nishio A, Lee S, Yonenaga Y, Sesin JMC, Horita Z, Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater 2014;69:68-77.
[6] Lu S, Hu QM, Delczeg-Czirjak EK, Johansson B, Vitos L, Determining the minimum grain size in severe plastic deformation process via first-principles calculations. Acta Mater 2012;60:4506-13.
[7] Huang M, Rivera-Díaz-del-Castillo PEJ, Bouaziz O, Van Der Zwaag S. Irreversible thermodynamics modelling of plastic deformation of metals. Mater Sci Technol 2008;24:495-500.
[8] Cai B, Tao J, Wang W, Yang X, Gong Y, Cheng L, et al. The effect of stacking fault energy on equilibrium grain size and tensile properties of ultrafine-grained Cu-Al-Zn alloys processed by rolling. J Alloy Compd 2014;6:115-9.
[9] Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG. Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation. Mater Sci Eng A 2007;463(1):22-6
[10] Abdellahi M, A new predictive model for calculating the hardness of metal matrix nanocomposites produced by mechanical alloying. J Mater Res 2013;28:3270–78.
[11] Edalati K, Ito Y, Suehiro K, Horita Z. Softening of high purity aluminum and copper processed by high pressure torsion. Int J Mater Res 2009;100:1668-73.
[12] Edalati K, Yamamoto A, Horita Z, Ishihara T. High pressure torsion of pure magnesium. Scripta Mater 2011;64:880-3
[13] Edalati K, Horita Z, Yagi S, Matsubara E. Allotropic phase transformation of pure zirconium by high-pressure torsion. Mater Sci Eng A 2009;523:277.
[14] Edalati K, Horita Z. Significance of homologous temperature in softening behavior. Mater Sci Eng A 2011;528:7514-23.
[15] Edalati K, Fujioka T, Horita Z. Mater Trans. Evolution of Mechanical Properties and Microstructures with Equivalent Strain in Pure Fe Processed by High Pressure Torsion. 2009;50:44-50.
[16] Matsunaga H, Horita Z. Mater Trans. Softening and Microstructural Coarsening without Twin Formation in FCC Metals with Low Stacking Fault Energy after Processing by High-Pressure Torsion. 2009;50:1633-37.
[17] Edalati K, Toh S, Arita M, Watanabe M, Horita Z. Appl Phys Lett. High-pressure torsion of pure cobalt: hcp-fcc phase transformations and twinning during severe plastic deformation.2013;102:181902.
[18] Ferreira C, Gene expression programming: a new adaptive algorithm for solving problems, Complex Syst. 2001;13:87–129