An overview on the structure, synthesis methods and applications of metal-organic frameworks
Subject Areas : Inorganic StructuresMajid Rouzifar 1 , Sara Sobhani 2
1 - Faculty of Sciences, University of Birjand, Iran
2 - Faculty of Sciences, University of Birjand, Iran
Keywords: Metal-organic frameworks, porous materials, Synthesis, Catalysis,
Abstract :
Metal-organic frameworks (MOFS), which are known as porous coordination polymers, have attracted the attention of countless researchers in recent years. These structures are a new class of porous materials, which are formed by connecting metal ions or clusters with polydentate organic ligands by covalent bonds. Compared to other porous compounds such as zeolites, silica, and activated carbon, coordination polymers are considered multifunctional materials with different properties due to the ability to adjust the surface of the cavity, size, shape, and functional groups of the surface of their cavities. For this reason, these compounds are used in different fields, including gas storage and absorption, manufacturing of various sensors, material separation, medical, biological, environmental and catalysis applications.
1. W. Nong, J. Wu, R. A. Ghiladi, and Y. Guan, Coord. Chem. Rev. 442, 214007 (2021).
2. Z. Wang, G. Chen, and K. Ding, Chem. Rev. 109, 322 (2009).
3. G. Zhang, L. Jin, R. Zhang, Y. Bai, R. Zhu, and H. Pang, Coord. Chem. Rev.439, 213915 (2021).
4. U. Ryu et al., Coord. Chem. Rev. 426, 213544 (2021).
5. D. Farrusseng, S. Aguado, and C. Pinel, Angew. Chem., Int. Ed. Engl., 48, 7502 (2009).
6. M. Najafi et al., Coord. Chem. Rev. 454, 214332 (2022).
7. H.-C. Zhou, J. R. Long, and O. M. Yaghi, ACS Publications, 112, 673-674 (2012).
8. M. D. Allendorf and V. Stavila, CrystEngComm, 17, 229 (2015).
9. E. Kianfar and H. Sayadi, Carbon Letters, 32,1645(2022).
10. W. Lu et al., Chem. Soci. Rev. 43, 5561 (2014).
11. S. N. Nangare, A. G. Patil, S. M. Chandankar, and P. O. Patil, J. Nanostructure Chem. 13, 197(2023).
12. R.-B. Lin, Z. Zhang, and B. ChenAcc. Chem. Res. 54, 3362 (2021).
13. S. Dutt, A. Kumar, and S. Singh, Clean Technol. 5, 140 (2023).
14. F. G. Cirujano, N. Martin, and L. H. Wee, Chem.Mater.32, 10268 (2020).
15. W. Fan et al., J. Mater. Chem. A ., 6, 24486 (2018).
16. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Science, 295, 469 (2002).
17. D. K. Roh, H. Jae, H. Mun, J. H. Jo, and W. S. Chi, Mater. Sci. Eng. B 263, 114833 (2021).
18. M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, Macromol. 50, 7809 (2017).
19. B. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, and O. M. Yaghi, Angew. Chem. 117, 4823 (2005).
20. P. Kumar, A. Pournara, K.-H. Kim, V. Bansal, S. Rapti, and M. J. Manos, Prog. Mater. Sci. 86, 25(2017).
21. M. Kim, J. F. Cahill, H. Fei, K. A. Prather, and S. M. Cohen, J. Am. Chem. Soc. 134, 18082 (2012).
22. A. Bavykina, N. Kolobov, I. S. Khan, J. A. Bau, A. Ramirez, and J. Gascon, Chem.rev. 120, 8468 (2020).
23. R. Krishna, J. Physical Chem. C, 113, 19756 (2009).
24. M. Weyd, H. Richter, J. T. Kühnert, I. Voigt, E. Tusel, and H. Brüschke, Chem. Ing. Tech. 82, 1257 (2010).
25. A. Huang, F. Liang, F. Steinbach, and J. Caro, J. Membr. Sci. 350, 5 (2010).
26. A. Huang and J. r. Caro, Chem. Mater 22, 4353 (2010).
27. J. Caro, Curr. Opin. Chem. Eng. 1, 77 (2011).
28. J. Bartoll, Proceedings of the 9th International Conference on NDT of Art, (2008).
29. P. Charpin, M. Nierlich, D. Vigner, M. Lance, and D. Baudry, Acta Crystallogr. C Struct. Chem. 43, 1465 (1987).
30. B. F. Hoskins and R. Robson, Journal of the American Chemical Society, 111, 5962 (1989).
31. H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, nature, 402, 276 (1999).
32. J.-R. Li, J. Sculley, and H.-C. Zhou, Chem. Rev. 112, 869 (2012).
33. Z. Hu, B. J. Deibert, and J. Li, Chem. Soci.Rev. 43, 5815(2014).
34. J. Della Rocca, D. Liu, and W. Lin, Acc. Chem. Res. 44, 957(2011).
35. J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C.-Y. Su, Chem.Soci. Rev. 43, 6011 (2014).
36. M. O’Keeffe and O. M. Yaghi, Chem. rev. 112, 675 (2012).
37. O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Nature, 423, 705 (2003).
38. H. Deng et al., Science,327, 596 (2010).
39. J. A. Johnson, S. Chen, T. C. Reeson, Y. S. Chen, X. C. Zeng, and J. Zhang, Chem. Eur. J. 20, 7632 (2014).
40. D. Feng et al., Nat. Commun. 5, 5723 (2014).
41. T.-F. Liu et al., J. Am. Chem. Soc.136, 7813(2014).
42. D. Banerjee, H. Wang, B. J. Deibert, and J. Li, Characterization, and Applications,1, 73 (2016).
43. I. Pacheco-Fernández, M. Rentero, J. H. Ayala, J. Pasán, and V. Pino, Anal. Chim. Acta.133, 137 (2020).
44. N. Stock, Microporous and mesoporous materials, 129, 287 (2010).
45. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, Science, 319, 939 (2008).
46. J. Bedia, V. Muelas-Ramos, M. Peñas-Garzón, A. Gómez-Avilés, J. J. Rodríguez, and C. Belver, Catal. 9, 52 (2019).
47. C.-W. Huang, V.-H. Nguyen, S.-R. Zhou, S.-Y. Hsu, J.-X. Tan, and K. C.-W. Wu, Sustain. Energy Fuels, 4, 504 (2020).
48. R. I. Walton, Chem. Soci. Rev. 31, 230 (2002).
49. V. F. Yusuf, N. I. Malek, and S. K. Kailasa, ACS omega, 7, 44507 (2022).
50. F. Zhang, Z. Li, T. Ge, H. Yao, G. Li, H. Lu, and Y. Zhu, Inorg. chem. 49, 3776 (2010).
51. S. Soni, P. K. Bajpai, and C. Arora, Characterization and Application of Nanomaterials, 3, 87 (2020).
52. V. Boldyrev and K. Tkáčová, J. mater. synth. process, 8, 121 (2000).
53. A. Pichon, A. Lazuen-Garay, and S. L. James, CrystEngComm, 8, 211 (2006).
54. Y. Chen et al., Chem. Eng. Sci. 158, 539 (2017).
55. S. Głowniak, B. Szczęśniak, J. Choma, and M. Jaroniec, Mater. Today, 46, 109 (2021).
56. J. Klinowski, F. A. A. Paz, P. Silva, and J. Rocha, Dalton Trans. 40, 321 (2011).
57. R. Vakili, S. Xu, N. Al-Janabi, P. Gorgojo, S. M. Holmes, and X. Fan, Microporous and Mesoporous Mater. 260, 45 (2018).
58. X. Han, K. Tao, Q. Ma, and L. Han, J. Mater. Sci. 29, 14697 (2018).
59. D. K. Yoo, G. Lee, M. M. H. Mondol, H. J. Lee, C. M. Kim, and S. H. Jhung, Coord. Chem. Rev. 474, 214868 (2023).
60. S. Gulati, S. Vijayan, S. Kumar, B. Harikumar, M. Trivedi, and R. S. Varma, Coord. Chem. Rev. 474, 214853 (2023).
61. J. Xu, J. Ma, Y. Peng, S. Cao, S. Zhang, and H. Pang, Chin Chem Lett . 34, 107527 (2023).
62. R. J. Kuppler et al., Coord. Chem. Rev. 253, 3042 (2009).
63. V. Isaeva and L. Kustov, Petroleum Chem. 50, 167 (2010).
64. A. E. Baumann, D. A. Burns, B. Liu, and V. S. Thoi, Commun. Chem, 2, 86 (2019).
65. Y.-R. Lee, J. Kim, and W.-S. AhnJ. Chem. Eng. 30, 1667 (2013).
66. L. Zhang et al., ACS Sustain. Chem. Eng 7, 1667 (2018).
67. E. N. Augustus, A. Nimibofa, I. A. Kesiye, and W. Donbebe, Am. J. Environ. Prot. 5, 61 (2017).
68. M. A. Yatoo, J. Gupta, F. Habib, A. Alfantazi, Z. Ansari, and Z. Ahmad, (2023).
69. H.-Y. Li, S.-N. Zhao, S.-Q. Zang, and J. Li, Chem. Soci. Rev. 49, 6364 (2020).
70. M. Tomić, M. Šetka, L. Vojkůvka, and S. Vallejos, Nanomater.11, 552 (2021).
71. B. Szulczyński and J. Gębicki, Environments, 4, 21 (2017).
72. E. F. Hasan Alzaimoor and E. Khan, Crit Rev Anal Chem . 1 (2023).
73. W. Cheng, X. Tang, Y. Zhang, D. Wu, and W. Yang, Trends Food Sci Technol.112, 268 (2021).
74. H. D. Lawson, S. P. Walton, and C. Chan, ACS Appl. Mater. Interfaces, 30, 7004 (2021).
75. P. Horcajada, C. Serre, M. Vallet‐Regí, M. Sebban, F. Taulelle, and G. Férey, Angew. Chem. 118, 6120 (2006).
76. S. He et al., Acta Pharm. Sin. B.11, 2362 (2021).
77. M. Moharramnejad et al., J Drug Deliv Sci Technol. 104285 (2023).
78. M. Alhamami, H. Doan, and C.-H. Cheng, Mater. 7, 3198 (2014).
79. Y. Sun et al., Nano-Micro Lett. 12, 1 (2020).
80. R. Zhu et al., Pharm. 15, 1599 (2023).
81. J. A. Moulijn, M. Makkee, and A. E. Van Diepen, John Wiley & Sons, (2013).
82. C. Adams, Catal. 52, 924 (2009).
83. J. Hagen, Industrial catalysis: a practical approach. John Wiley & Sons, (2015).
84. F. X. L. i Xamena, A. Abad, A. Corma, and H. Garcia, J. Catal. 250, 294 (2007).
85. F. X. Felpin and E. Fouquet, ChemSusChem. 1, 718 (2008).
86. M. Nikoorazm, A. Ghorbani-Choghamarani, and A. Jabbari, J. Porous Mater. 23, 967 (2016).
87. R. E. Malekshah, F. Shakeri, A. Khaleghian, and M. Salehi, Int. J. Biol. Macromol, 152, 846 (2020).
88. S. Jain and O. Reiser, ChemSusChem.
89. 1, 534, (2008).
90. M. Aghajani and N. Monadi, J. Iran. Chem. Soc. 14, 963 (2017).
91. Y.-S. Kang, Y. Lu, K. Chen, Y. Zhao, P. Wang, and W.-Y. Sun, Coord. Chem. Rev. 378, 262 (2019).
92. Y.-B. Huang, J. Liang, X.-S. Wang, and R. Cao, Chem. Soc. Rev. 46, 126 (2017).
93. A. Manjceevan and K. Velauthamurty, CRC Press, 99 (2023).
94. M. Opanasenko, A. Dhakshinamoorthy, Y. K. Hwang, J. S. Chang, H. Garcia, and J. Čejka, ChemSusChem. 6, 865 (2013).
95. K. Chen and C.-D. Wu, Coord. Chem.Rev. 378, 445 (2019).
96. A. Fujishima and K. Honda, nature, 238, 37 (1972).
97. W. Gong, Y. Liu, H. Li, and Y. Cui, " Coord. Chem. Rev. 420, 213400 (2020).
98. F. Glaser and O. S. Wenger, Coord. chem. rev. 405, 213129 (2020).
99. C. M. Friend and B. Xu, Acc. Chem. Res. 50, 517 (2017).
100. G. Ciamician, Science, 36, 385 (1912).
101. K.-i. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, Electrochem. commun. 2, 207 (2000).
102. S. Bandyopadhyay, A. G. Anil, A. James, and A. Patra, ACS Appl. Mater. Interfaces, 8, 27669 (2016).
103. D. Li, M. Kassymova, X. Cai, S.-Q. Zang, and H.-L. Jiang, Coord. Chem. Rev. 412, 213262 (2020).
104. U. G. Akpan and B. H. Hameed, J. Hazard. Mater. 170, 520 (2009).
105. D. Friedmann, A. Hakki, H. Kim, W. Choi, and D. Bahnemann, Green Chem. 18, 5391 (2016).
106. S. Zhang, Y. Zhao, R. Shi, G. I. Waterhouse, and T. Zhang, EnergyChem. 1, 100013 (2019).
107. M. Ni, M. K. Leung, D. Y. Leung, and K. Sumathy, Renew. Sust. Energ. Rev. 11, 401 (2007).
108. K. Qi, B. Cheng, J. Yu, and W. Ho, J. Alloys Compd. 727, 792 (2017).
109. X. Xu, C. Randorn, P. Efstathiou, and J. T. Irvine, Nature mater. 11, 595 (2012).