Temporal-Spatial Analysis of Numbering Trend of Thunderstorm Days in Iran
Subject Areas :Mohammad Darand 1 , Mahtab Narimani 2 , Jila Shariati 3 , Shermin Namdari 4
1 - استادیار اقلیم شناسی دانشکده منابع طبیعی دانشگاه کردستان
2 - دانشجوی کارشناسی اقلیمشناسی دانشکده منابع طبیعی دانشگاه کردستان
3 - دانشجوی کارشناسی اقلیمشناسی دانشکده منابع طبیعی دانشگاه کردستان
4 - دانشجوی کارشناسی اقلیمشناسی دانشکده منابع طبیعی دانشگاه کردستان
Keywords:
Abstract :
Monthly data of numbering trend of thunderstorm days connected to 50 synoptic stations of Iran during 1/1980 to 12/2010 were used to do this research. One matrix with dimensions 372×50 was created where there was time (months) on the rows and columns were located with place or analyzing synoptic stations. Nonparametric Mann Kendal test was used to analyze variance of numbering trend of thunderstorm days. The significance of trend at confidence level was 95% of test. The Sen Estimator was applied to estimate variance rate. The results of this study showed that the frequency of thunderstorms days of Iran experienced a significant variance during analyzing period. The frequency of thunderstorms increased on synoptic stations during most of the months of the year. The increasing trend of most stations located in northwest, west, north and northeast was significant at 95% confidence level. The extent and increasing rate of frequency of thunderstorm days in spring was more than other seasons. In contrast to other months most of western stations experienced significant decreasing trend in March. It seems that the reason of these variances in frequency of occurrence of this atmospheric phenomenon resulted from variance of reaction of synoptic systems of effective scale on climate of Iran. The increasing reaction of Siberian anticyclone results in other conditions over northern parts of country during spring and summer and it results in increase of thunderstorms occurrence over northern parts of country. Also decreasing trend in March is resulted by decreasing trend in Sudan and Mediterranean cyclonic systems activity.
- حجازی زاده، زهرا (1379)، بررسی عوامل سینوپتیکی بارش و طوفانهای توام با رعد و برق غرب کشور، مجله دانشکده ادبیات و علوم انسانی دانشگاه تربیت معلم، 8: 26-5.
- خالصی، فریده (1393)، واکاوی زمانی توفانهای تندری در ایران، دوفصلنامه آب و هواشناسی کاربردی، 1: 60-47.
- دارند، محمد(1393)، شناسایی تغییرات ارتفاع ژئوپتانسیل، تاوایی و فشار تراز دریای الگوهای گردش جوی غالب موثر بر اقلیم ایران زمین، پژوهشهای جغرافیای طبیعی، 3: 374-349.
- خوشحال دستجردی، جواد و قویدل رحیمی، یوسف(1386)، شناسایی ویژگیهای مخاطرات محیطی منطقه شمال غرب ایران (نمونه مطالعاتی: خطر توفانهای تندری در تبریز)، مدرس علوم انسانی، ویژه نامه جغرافیا، 53: 115-101.
- صلاحی، برومند(1389)، بررسی ویژگیهای آماری و همدیدی طوفانهای تندری استان اردبیل، پژوهشهای جغرافیای طبیعی، 72: 142-129.
- عسگری، احمد و محبی، فرشته (1389)، مطالعه آماری همدیدی توفانهای تندری در استان خوزستان، چهارمین کنفرانس منطقهای تغییر اقلیم، 119-111.
- Davis, S and Walsh, K.J.E (2008): Southeast Australian thunderstorms: are they increasing in frequency?, Aust. Met. Mag, 57, pp: 1-11.
- Doswell CA III. (1987): The distinction between large-scale and mesoscale contributions to severe convection: A case study example. Weather and Forecasting 2, pp: 3–16.
- Robinson, E.D., Robert J. Trapp, and Michael E. Baldwin, (2013): The Geospatial and Temporal Distributions of Severe Thunderstorms from High-Resolution Dynamical Downscaling. J. Appl. Meteor. Climatol., 52, pp: 2147–2161.
- Gaal, L, Molnar, P and Szolgay, J (2014): Spatial analysis of intense thunderstorms in Switzerland and temporal trends in their occurrence, Geophysical Research Abstracts, Vol. 16, EGU2014-11136-1.
- Houze RA. (1993): Cloud Dynamics. Academic Press: San Diego.
- IPCC, (2012): Summary for Policy Makers, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, A Special Report of Workings Groups I and II of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, and New York, USA, p. 6.
- IPCC, Climate Change (2007): Synthesis Report. Contribution of Working Groups I, II, and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Geneva, Switzerland), 2007.
- Kunz M, Sander J and Kottmeier Ch (2009): Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany, Internatioanl journal of climatology, 29, pp:2283-2297.
- Mandla, K, Enno, S.E and Sepp, M (2014): Thunderstorms caused by southern cyclones in Estonia, Estonian Journal of Earth Sciences, 63(2), pp: 108-117.
- Nigeria Climate Review Bulletin (2011): Rainfall patterns over the south east. Retrieved from: http://www.nimetng.org.
17- Yang X and Z Li. (2014): Increases in thunderstorm activity and relationships with air pollution in southeast China. Journal of Geophysical Research – Atmospheres, 119(4), doi:10.1002/2013JD021224.
_||_