1D Photonic Crystal-Based Biosensor for Multiple Biomarkers Detection
Subject Areas : Nano BiophotonicsFarzaneh Bayat 1 , Kazem Jamshidi-Ghaleh 2
1 - Azarbaijan Shahid Madani University, Tabriz, Iran
2 - Azarbaijsn Shahid Madani University, Tabriz, Iran
Keywords:
Abstract :
[1] E. Ouellet, C. Lausted, T. Lin, C. W. T. Yang, L. Hood, and E. T. Lagally, “Parallel microfluidic surface plasmon resonance imaging arrays,” Lab Chip, vol. 10, no. 5, pp. 581–588, 2010.
[2] E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, “Characterization of a wavelength-tunable surface plasmon resonance microscope,” Review of scientific instruments, vol. 75, no. 7, pp. 2300–2304, 2004.
[3] B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Analytical Chemistry, vol. 73, no. 1, pp. 1–7, 2001.
[4] S. Scarano, M. Mascini, A. P. F. Turner, and M. Minunni, “Surface plasmon resonance imaging for affinity-based biosensors,” Biosensors and bioelectronics, vol. 25, no. 5, pp. 957–966, 2010.
[5] L. M. Demers, D. S. Ginger, S.-J. Park, Z. Li, S.-W. Chung, and C. A. Mirkin, “Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography,” Science, vol. 296, no. 5574, pp. 1836–1838, 2002.
[6] J.-H. Lim, D. S. Ginger, K.-B. Lee, J. Heo, J.-M. Nam, and C. A. Mirkin, “Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces,” Angewandte Chemie International Edition, vol. 42, no. 20, pp. 2309–2312, 2003.
[7] K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nature nanotechnology, vol. 2, no. 3, pp. 145–155, 2007.
[8] A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, E. Delamarche, and Others, “Microcontact printing of proteins,” Advanced Materials, vol. 12, no. 14, pp. 1067–1070, 2000.
[9] S. Gupta, K. P. Manubhai, V. Kulkarni, and S. Srivastava, “An overview of innovations and industrial solutions in Protein Microarray Technology,” Proteomics, vol. 16, no. 8, pp. 1297–1308, 2016.
[10] M. Castronovo and D. Scaini, “The atomic force microscopy as a lithographic tool: nanografting of DNA nanostructures for biosensing applications,” DNA Nanotechnology: Methods and Protocols, vol.749, pp. 209–221, 2011.
[11] S. R. Coyer, A. J. Garc´ıa, and E. Delamarche, “Facile Preparation of Complex Protein Architectures with Sub-100-nm Resolution on Surfaces,” Angewandte Chemie International Edition, vol. 46, no. 36, pp. 6837–6840, 2007.
[12] L. Petersson, L. Dexlin-Mellby, A. A. Bengtsson, G. Sturfelt, C. A. K. Borrebaeck, and C. Wingren, “Multiplexing of miniaturized planar anti-body arrays for serum protein profiling - a biomarker discovery in SLE nephritis,” Lab Chip, vol. 14, no. 11, pp. 1931–1942, 2014.
[13] J. W. Strutt, “On waves propagated along the plane surface of an elastic solid,” Proc. London Math. Soc, vol. 17, no. 253, pp. 4–11, 1885.
[14] R. K. Lee, Y. Xu, and A. Yariv, “Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab,” JOSA B, vol. 17, no. 8, pp. 1438–1442, 2000.
[15] V. V. Rumyantsev and A. Schwartzman, “Peculiarities of propagation of electromagnetic excitations through nonideal 1d Photonic Crystal,” J Electr Electron Syst, vol. 1, no. 109, pp. 2-7, 2013.
[16] K. Jamshidi-Ghaleh, F. Bayat, A. Phirouznia, and S. Soleimani, “Petal- shaped optical vortice generation by a graded-index defective 1DPC nanostructure under irradiation of a Gaussian beam,” Journal of Optics, vol. 17, no. 3, pp. 35104, 2015.
[17] K. Jamshidi-Ghaleh and F. Bayat, “Engineering 1DPC defect mode with GRIN lenses to design beam shapers,” IEEE Photonics Technology Letters, vol. 26, pp. 440–443, Mar 2014.
[18] K. Jamshidi Ghaleh and F. Bayat, “Generating frequency dependant twisted beam shapes using 1DPC nanostructure with graded-index defect layer,” Optics Letters, vol. 39, no. 13, pp. 3802–3805, 2014.
[19] F. Bayat, S. Ahmadi-Kandjani, and H. Tajalli, “Designing real-time biosensors and chemical sensors based on defective 1-D Photonic Crystals,” IEEE Photonics Technology Letters, vol. 28, pp. 1843–1846, Sep 2016.
[20] Qi, H., X. Zhang, M. Jiang, Q. Wang, and D. Li. "Optical constants of zinc selenide in visible and infrared spectral ranges." Journal of Applied Spectroscopy 84, no. 4, pp. 679-682, 2017.
[21] J.-Q. Xi, Martin F. Schubert, Jong Kyu Kim, E. Fred Schubert, Minfeng Chen, Shawn-Yu Lin, W. Liu & J. A. Smart, "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature photonics, vol.1, no. 3, pp. 176-179, 2007.
[22] J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nature photonics, vol. 1, no. 3, pp. 176–179, 2007.
[23] C. Ye and R. R. McLeod, “GRIN lens and lens array fabrication with diffusion-driven photopolymer,” Optics Letters, vol. 33, no. 22, pp. 2575– 2577, 2008.
[24] H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” in NMR 3D Analysis Photopolymerization, pp. 169–273, Springer, 2004.
[25] A. Yariv and P. Yeh, “Optical Waves in Crystals: Propagation and Control of Laser Radiation”, vol. 5. Wiley New York, pp. 155-219, 1984.