Antibacterial effects of green laser in vicinity of silver nanoparticles on methicillin-resistant staphylococcus aureus (MRSA)
Subject Areas : Nano BiophotonicsMaliheh Ranjbaran 1 , Zahra Aghaebrahimi 2 , Jamshid Sabaghzadeh 3 , zohreh daraeizadeh 4 , arash abednezhad 5
1 - Department of physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
4 - Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
5 - Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Keywords:
Abstract :
[1] B. Aslam, W. Wang, M.I. Arshad, M. Khurshid, S. Muzammil, M.H. Rasool, M.A. Nisar, R.F. Alvi, M.A. Aslam, M.U. Qamar, and M.K. Salamat, "Antibiotic resistance: a rundown of a global crisis, Infection and drug resistance," Infect Drug Resist, vol. 11, pp. 1645 (1-14), 2018
[2] R.M. Klevens, M.A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, L.H. Harrison, R. Lynfield, G. Dumyati, J.M. Townes, and A.S. Craig. "Invasive methicillin-resistant Staphylococcus aureus infections in the United States," Jama, vol. 298, no. 15, pp. 1763-1771, 2007.
[3] A. S. Haddadin, S. A. Fappiano, and P. A. Lipsett, "Methicillin-resistant Staphylococcus aureus (MRSA) in the intensive care unit,” Postgraduate medical journal, vol. 78, pp. 385-392, 2002.
[4] P. Yang, N. Wang, C. Wang, Y. Yao, X. Fu, W. Yu, R. Cai, and M. Yao, "460 nm visible light irradiation eradicates MRSA via inducing prophage activation," Journal of Photochemistry and Photobiology B: Biology, vol. 166, pp. 311-22, 2017.
[5] Y.N. Slavin, J. Asnis, U.O. Häfeli, and H. Bach, "Metal nanoparticles: understanding the mechanisms behind antibacterial activity", Journal of nanobiotechnology, vol. 15, no. 1, pp. 1-20, 2017.
[6] R.S. Ghaderi, M. Kazemi, and S. Soleimanpour, "Nanoparticles are More Successful Competitor than Antibiotics in Treating Bacterial Infections: A Review of the Literature," Iranian Journal of Medical Microbiology, vol. 15, no. 1, pp. 18-45, 2021.
[7] A.P. Ingle, N. Duran, and M. Rai, "Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review," Applied microbiology and biotechnology, vol. 98, pp. 1001-1009, 2014.
[8] H. Itohiya, Y. Matsushima, S. Shirakawa, S. Kajiyama, A. Yashima, T. Nagano, and K. Gomi, "Organic resolution function and effects of platinum nanoparticles on bacteria and organic matter," PloS one, vol. 14, no. 9, pp. e0222634 (1-12), 2019.
[9] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, and M.J. Yacaman, "The bactericidal effect.t of silver nanoparticles," Nanotechnology, vol. 16, no. 10, pp. 2346 (1-8), 2005.
[10] A.P. Ingle, N. Duran, and M. Rai, "Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review," Applied microbiology and biotechnology, vol. 98, no. 3, pp. 1001-1009, 2014.
[11] H. F. chambers, “The changing epidemiology of staphylococcus aureus,” Special issue, vol. 7, pp. 178–182, 2001.
[12] G. Keiser, Biophotonics, Springer, chapter 6, 2016.
[13] S. E. McBirney, K. Trinh, A. Wong-Beringer, and A. M. Armani, "Wavelength- normalized spectroscopic analysis of staphylococcus aureus and pseudomonas aeruginosa growth rates," Biomedical optics express, vol. 7, pp. 4034-4042. 2016.
[14] I. Sondi and B. Salopek-Sondi, "Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for gram-negative bacteria," J. Colloid Interface Sci. vol. 275, pp. 177–182, 2004.
[15] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, and M.J. Yacaman, "The bactericidal effect of silver nanoparticles," Nanotechnology, vol. 16, pp. 2346-2353, 2005.
[16] A.F. Wady, A.L. Machado, C.C. Foggi, C.A. Zamperini, V. Zucolotto, E.B. Moffa, and C.E. Vergani, "Effect of a Silver Nanoparticles Solution on Staphylococcus aureus and Candida spp," Journal of Nanomaterials, vol. 2014, pp. 1-7, 2014.
[17] F.E. Akram, T. El-Tayeb, K. Abou-Aisha, and M. El-Azizi, "A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA)," Annals of clinical microbiology and antimicrobials, vol. 15, no. 1, pp. 1-3, 2016.
[18] S. Pal, Y. K. Tak, and J. M. Song, "Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli," Appl. Environ. Microbiol, vol. 73, pp. 1712–1720, 2007.
[19] A. Al-Sharqi, K. Apun, M. Vincent, D. Kanakaraju, and L.M. Bilung, "Enhancement of the antibacterial efficiency of silver nanoparticles against gram-positive and gram-negative bacteria using blue laser light," International Journal of Photoenergy, vol. 2019, pp. 1-12, 2019.
[20] C. Noguez, "Surface plasmons on metal nanoparticles: the influence of shape and physical environment," J. Phys. Chem. C, vol. 111, no. 10, pp. 3806-3819, 2007.
[21] D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, and D.G. Fernig, "A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra," Analyst. vol. 139, no. 19, pp. 4855-4861, 2014.
[22] R.T. da Silva, M.V. Petri, E.Y. Valencia, P.H. Camargo, S.I. de Torresi, and B. Spira, "Visible light plasmon excitation of silver nanoparticles against antibiotic-resistant Pseudomonas aeruginosa," Photodiagnosis and Photodynamic Therapy, vol. 1, no. 31, pp. 101908,2020.
[23] D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, and D. G. Fernig, "A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra," Analyst, vol. 139, pp. 4855-4861, 2014.