Fracture analysis of conical shells containing an internal semi-elliptical crack
Subject Areas :
Analytical and Numerical Methods in Mechanical Design
C. Burvill
1
,
M.M. Kheirikhah
2
,
S. Omidi
3
,
S. Gohari
4
1 - Department of Mechanical Engineering, the University of Melbourne
Parkville, VIC 3010, Australia.
2 - Department of Mechanical Engineering, the University of Melbourne
Parkville, VIC 3010, Australia.
3 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University
Qazvin, Iran.
4 - Department of Mechanical Engineering, the University of Melbourne
Parkville, VIC 3010, Australia.
Received: 2022-09-21
Accepted : 2022-09-21
Published : 2022-06-01
Keywords:
References:
Diamantoudis, A. T. and Labeas, G. N. (2005) ‘Stress intensity factors of semi-elliptical surface cracks in pressure vessels by global-local finite element methodology’, Engineering Fracture Mechanics, 72(9), pp. 1299–1312. doi: 10.1016/j.engfracmech.2004.10.004.
Moustabchir, H. et al. (2010) ‘Experimental and numerical study of stress-strain state of pressurised cylindrical shells with external defects’, Engineering Failure Analysis. Elsevier Ltd, 17(2), pp. 506–514. doi: 10.1016/j.engfailanal.2009.09.011.
Lin, X. B. and Smith, R. a (1998) ‘Fatigue Growth Prediction of Internal Surface Cracks in Pressure Vessels’, Journal of Pressure Vessel Technology, 120(1), pp. 17–23. doi: 10.1115/1.2841878.
Underwood, J. (1972) ‘STP34113S @ www.astm.org’. In: Stress Analysis and Growth of Cracks: Proceedings of the 1971 National Symposium on Fracture Mechanics: Part 1. ASTM International; 1972. https://doi.org/ 10.1520/STP34113S.
Emery, A. F., Love, W. J. and Kobayashi, A. S. (1976) ‘Elastic Crack Propagation Along a Pressurized Pipe’, Journal of Pressure Vessel Technology, 98(1), pp. 2–7. doi: 10.1115/1.3454320.
Delale, F. and F. Erdogan (1984) ‘Application of Line-Spring Model To a Stiffened Cylindrical Shell Containing an Axial Part-Through Crack’, Fracture 84, 49(March 1982), pp. 1037–1044. doi: 10.1016/B978-1-4832-8440-8.50084-3.
Raju, I. S. and Newman, J. C. (1982) ‘Stress-Intensity Factors for Internal and External Surface Cracks in Cylindrical Vessels’, Journal of Pressure Vessel Technology, 104(4), p. 293. doi: 10.1115/1.3264220.
Wang X, Lambert SB. (1996) 'Stress intensity factors and weight functions for longitudinal semi-elliptical surface cracks in thin pipes', Int J Press Vessel Pip. 65(1):75–87. https://doi.org/10.1016/0308-0161(94)00160-K.
Bergman, M. (1995) ‘Stress Intensity Factors for Circumferential Surface Cracks in Pipes’, Fatigue & Fracture of Engineering Materials & Structures, 18(10), pp. 1155–1172. doi: 10.1111/j.1460-2695.1995.tb00845.x.
Carpinteri, A. (1993) ‘Shape change of surface cracks in round bars under cyclic axial loading’, International Journal of Fatigue, 15(1), pp. 21–26. doi: 10.1016/0142-1123(93)90072-X.
Shin, C. S. and Cai, C. Q. (2004) ‘Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending’, International Journal of Fracture, 129(3), pp. 239–264. doi: 10.1023/B:FRAC.0000047784.23236.7d.
Shahani, A. R. and Habibi, S. E. (2007) ‘Stress intensity factors in a hollow cylinder containing a circumferential semi-elliptical crack subjected to combined loading’, International Journal of Fatigue, 29(1), pp. 128–140. doi: 10.1016/j.ijfatigue.2006.01.017.
Shahani, A. R. and Kheirikhah, M. M. (2007) ‘Stress intensity factor calculation of steel-lined hoop-wrapped cylinders with internal semi-elliptical circumferential crack’, Engineering Fracture Mechanics, 74(13), pp. 2004–2013. doi: 10.1016/j.engfracmech.2006.10.014.
Nabavi, S. M. and Shahani, A. R. (2009) ‘Thermal stress intensity factors for a cracked cylinder under transient thermal loading’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 86(2–3), pp. 153–163. doi: 10.1016/j.ijpvp.2008.11.024.
El Hakimi, A., Le Grognec, P. and Hariri, S. (2008) ‘Numerical and analytical study of severity of cracks in cylindrical afile:///media/saber/Saber’s%20volume/P/New%20folder/2019/references nd spherical shells’, Engineering Fracture Mechanics, 75(5), pp. 1027–1044. doi: 10.1016/j.engfracmech.2007.04.027.
Meshii, T., Tanaka, T. and Lu, K. (2010) ‘T-Stress solutions for a semi-elliptical axial surface crack in a cylinder subjected to mode-I non-uniform stress distributions’, Engineering Fracture Mechanics. Elsevier Ltd, 77(13), pp. 2467–2478. doi: 10.1016/j.engfracmech.2010.06.007.
Wen, J. F. et al. (2011) ‘Creep fracture mechanics parameters for internal axial surface cracks in pressurized cylinders and creep crack growth analysis’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 88(11–12), pp. 452–464. doi: 10.1016/j.ijpvp.2011.08.005.
Predan, J., Močilnik, V. and Gubeljak, N. (2013) ‘Stress intensity factors for circumferential semi-elliptical surface cracks in a hollow cylinder subjected to pure torsion’, Engineering Fracture Mechanics, 105, pp. 152–168. doi: 10.1016/j.engfracmech.2013.03.033.
Yang ST, Ni YL, Li CQ. (2013) 'Weight function method to determine stress intensity factor for semi-elliptical crack with high aspect ratio in cylindrical vessels', Eng Fract Mech. 109: 138–49. https://doi.org/10.1016/j.engfracmech.2013.05.014.
Okada, H. et al. (2016) ‘Computations of stress intensity factors for semi-elliptical cracks with high aspect ratios by using the tetrahedral finite element (fully automated parametric study)’, Engineering Fracture Mechanics. Elsevier Ltd, 158, pp. 144–166. doi: 10.1016/j.engfracmech.2016.02.049.
Zareei, A. and Nabavi, S. M. (2016) ‘Calculation of stress intensity factors for circumferential semi-elliptical cracks with high aspect ratio in pipes’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 146, pp. 32–38. doi: 10.1016/j.ijpvp.2016.05.008.
Shariati, M., Mohammadi, E. and Masoudi Nejad, R. (2017) ‘Effect of a new specimen size on fatigue crack growth behavior in thick-walled pressure vessels’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 150, pp. 1–10. doi: 10.1016/j.ijpvp.2016.12.009.
Aliha, M. R. M. and Gharehbaghi, H. (2017) ‘The effect of combined mechanical load/welding residual stress on mixed mode fracture parameters of a thin aluminum cracked cylinder’, Engineering Fracture Mechanics. Elsevier Ltd, 180, pp. 213–228. doi: 10.1016/j.engfracmech.2017.05.003.
Alizadeh Kaklar, J. and Saeidi Googarchin, H. (2018) ‘Approximate stress intensity factors for a semi-circular crack in an arbitrary structure under arbitrary mode I loading’, Theoretical and Applied Fracture Mechanics. Elsevier Ltd, 94, pp. 71–83. doi: 10.1016/j.tafmec.2018.01.007.
Ramezani, M. K. et al. (2018) ‘Empirical solutions for stress intensity factors of a surface crack in a solid cylinder under pure torsion’, Engineering Fracture Mechanics. Elsevier, 193(June 2017), pp. 122–136. doi: 10.1016/j.engfracmech.2018.02.015.
Shlyannikov, V. N., Yarullin, R. R. and Ishtyryakov, I. S. (2018) ‘Effect of temperature on the growth of fatigue surface cracks in aluminum alloys’, Theoretical and Applied Fracture Mechanics. Elsevier Ltd, 96, pp. 758–767. doi: 10.1016/j.tafmec.2017.11.003.
Kheirikhah, M. M. and Khalili, S. M. R. (2011) ‘Fracture analysis of semielliptical cracks at the interface of two functionally gradient materials using three-dimensional finite-element method’, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 225(2), pp. 49–59. doi: 10.1177/1464420710397640.
Nami, M. R. and Eskandari, H. (2012) ‘Three-dimensional investigations of stress intensity factors in a thermo-mechanically loaded cracked FGM hollow cylinder’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 89, pp. 222–229. doi: 10.1016/j.ijpvp.2011.11.004.
Seifi, R. (2015) ‘Stress intensity factors for internal surface cracks in autofrettaged functionally graded thick cylinders using weight function method’, Theoretical and Applied Fracture Mechanics. Elsevier Ltd, 75, pp. 113–123. doi: 10.1016/j.tafmec.2014.11.004.
Farahpour, P., Babaghasabha, V. and Khadem, M. (2015) ‘Stress intensity factor calculation for semi-elliptical cracks on functionally graded material coated cylinders’, Structural Engineering and Mechanics, 55(6), pp. 1087–1097. doi: 10.12989/sem.2015.55.6.1087.
Chen, J. and Pan, H. (2013) ‘Stress intensity factor of semi-elliptical surface crack in a cylinder with hoop wrapped composite layer’, International Journal of Pressure Vessels and Piping. Elsevier Ltd, 110, pp. 77–81. doi: 10.1016/j.ijpvp.2013.04.026.
Eskandari, H. (2016) ‘Stress intensity factor of semi-elliptical surface crack in a thermo-mechanically loaded cylinder with hoop wrapped FGM layer’, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(8), pp. 2563–2570. doi: 10.1007/s40430-016-0495-9.
Eskandari, H. (2018) ‘Three-dimensional investigation of cracked tubes coated with functionally graded material under shock loading’, Journal of the Brazilian Society of Mechanical Sciences and Engineering. Springer Berlin Heidelberg, 40(9), pp. 1–9. doi: 10.1007/s40430-018-1352-9.
Murtaza, U.T., Heydar, M. J. (2017) ‘Stress intensity factors of corner cracks at set-in nozzle–cylinder intersection of a PWR reactor pressure vessel’, J Brazilian Soc Mech Sci Eng.,39(2): 601–11. https://doi.org/10.1007/s40430-016-0522-x..
Wang, L. et al. (2017) ‘Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines’, Applied Composite Materials. Applied Composite Materials. doi: 10.1007/s10443-017-9621-9.
Rekbi, F. M. L., Hecini, M. and Khechai, A. (2018) ‘Experimental and numerical analysis of mode-I interlaminar fracture of composite pipes’, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(10), p. 502. doi: 10.1007/s40430-018-1423-y.
Ugural, A. (2009) Stresses in beams, plates, and shells. CRC press; 2009. https://doi.org/10.1201/b17516.
Barsoum, R. S. (1976) ‘On the use of isoparametric finite elements in linear fracture mechanics’, International Journal for Numerical Methods in Engineering, 10(1), pp. 25–37. doi: 10.1002/nme.1620100103.