The possible use of Sewage Sludge Ash (SSA) in Self-Consolidating Concrete (SCC) for environmental sustainability
Subject Areas : Structural EngineeringMohamadreza Khanban 1 , Mahdi Mahdikhani 2
1 - Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
2 - Faculty of Civil Engineering, Imam Khomeini International University, Qazvin, Iran.
Keywords:
Abstract :
[1] LaGrega, Michael D., Phillip L. Buckingham, and Jeffrey C. Evans. Hazardous waste management. Waveland Press, 2010.
[2] EPA Method 1311, "Toxicity Characteristic Leaching Procedure Test Method for Evaluation of Solid Wastes, Physical and Chemical Methods", SW846, Prepared by Environmental Protection Agancy, US, 2003.
[3] M., NaminiEbadi, T., “Reducing the source of hazardous waste and managing it through chemical treatment”, First Conference on Environmental Engineering, University of Tehran, 2006.
[4] Shapouri, V., “stabilization and solidification of hazardous waste (heavy metals) using constructional material”, Master Thesis, University of Amirkabir, Tehran, 2006.
[5] Means, Jeffrey L. Smith, et al. The] application of solidification/stabilization to waste materials. No. TP995 M48. 1995.
[6] Abdoli, M., JaliliGhazizadeh, M., SamiyiFard, R., “Hazardous waste management”, Tehran University Press, Iran, 2010.
[7] Ebrahimi, M., Shamabadi, N., “Investigating the status and types of special wastes in Qom province”, The 4th National Conference on Waste Management, Environmental Protection Agency, Mashhad, Iran, 2008.
[8] Spence, Roger D., and Caijun Shi, eds. Stabilization and solidification of hazardous, radioactive, and mixed wastes. CRC press, 2004.
[9] Cullinane, M. J., Jones, L. W., Malone, P. G., "Handbook for Stabilization/ Solidification of Hazardous Waste", First Report, Prepared for USEPA; Hazardous Waste Engineering Research Laboratory, Cincinnati, Ohio, US, 1986.
[10] Batchelor, B. "Overview of waste stabilization with cement." Waste management 26.7: 689-698, 2006.
[11] Zhou, Q., N. B. Milestone, and M. Hayes. "An alternative to Portland cement for waste encapsulation—the calcium sulfoaluminate cement system." Journal of hazardous materials 136.1: 120-129, 2006.
[12] Karamalidis, Athanasios K., and Evangelos A. Voudrias. "Leaching and immobilization behavior of Zn and Cr from cement-based stabilization/solidification of ash produced from incineration of refinery oily sludge." Environmental Engineering Science 26.1: 81-96, 2009.
[13] Zhang, Min, and Eric J. Reardon. "Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite." Environmental science & technology 37.13: 2947-2952, 2003.
[14] Asavapisit, Suwimol, WeenaNanthamontry, and ChongrakPolprasert. "Influence of condensed silica fume on the properties of cement-based solidified wastes." Cement and concrete research 31.8: 1147-1152, 2001.
[15] Coz, A., et al. "Influence of commercial and residual sorbents and silicates as additives on the stabilisation/solidification of organic and inorganic industrial waste." Journal of hazardous materials 164.2: 755-761, 2009.
[16] Shi, Hui-Sheng, and Li-Li Kan. "Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete." Journal of hazardous materials 164.2: 750-754, 2009.
[17] Park, Jong Soo, Young Jun Park, and Jong Heo. "Solidification and recycling of incinerator bottom ash through the addition of colloidal silica (SiO 2) solution." Waste Management 27.9: 1207-1212, 2007.
[18] Aubert, J. E., B. Husson, and A. Vaquier. "Use of municipal solid waste incineration fly ash in concrete." Cement and Concrete Research 34.6: 957-963, 2004
[19] Foladori, Paola, Gianni Andreottola, and GiulianoZiglio. Sludge reduction technologies in wastewater treatment plants. IWA publishing, 2010.
[20] Davis, R. D. "The impact of EU and UK environmental pressures on the future of sludge treatment and disposal." Water and Environment Journal 10.1 (1996): 65-69.
[21] ASTM C150/C150M-12. Standard specification for Portland cement. West Conshohocken (PA, US): ASTM International; 2012.
[22] S. EFNARC, Guidelines for Self-Consolidating Concrete, Association House, London, UK, 2005.
[23] Felekoğlu, Burak, SelçukTürkel, and BülentBaradan. "Effect of water/cement ratio on the fresh and hardened properties of self-consolidating concrete." Building and Environment 42.4 (2007): 1795-1802.
[24] ASTM-C1611. Standard test method for slump flow of self-consolidating concrete. West Conshohocken (PA, US): ASTM International; 2010.
[25] Ghahramani, Gh.,Tadayon, M., Azarioun, A., “Different techniques for measuring the electrical resistance of concrete”, The first international congress of non-osmosis concretes - water storage tanks, Rasht, Iran, 2011.
[26] RILEM, CPC-11,2. Absorption of water by concrete by capillarity.TC14-CPC, 1982, RILEM technical recommendations for the testingand use of construction materials, International Union of Testing and Research Laboratories for Materials and Structures, E&FN Spon 1994.
[27] Spence, Roger D., and Caijun Shi, eds. Stabilization and solidification of hazardous, radioactive, and mixed wastes. CRC press, 2004.
[28] Mijno, Violaine, et al. "Compositional changes in cement-stabilized waste during leach tests—comparison of SEM/EDX data with predictions from geochemical speciation modeling." Journal of colloid and interface science 280.2: 465-477, 2004.
[29] Malviya, Rachana, and RubinaChaudhary. "Factors affecting hazardous waste solidification/stabilization: a review." Journal of Hazardous Materials 137.1: 267-276, 2006.
[30] Pereira, C. Fernández, et al. "Long and short-term performance of a stabilized/solidified electric arc furnace dust." Journal of hazardous materials 148.3: 701-707, 2007.
[31] Galiano, Y. Luna, C. Fernández Pereira, and J. Vale. "Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers." Journal of hazardous materials 185.1: 373-381, 2011.
[32] Ettler, Vojtěch, et al. "Leaching of APC residues from secondary Pb metallurgy using single extraction tests: the mineralogical and the geochemical approach." Journal of hazardous materials 121.1: 149-157, 2005.
[33] Luo, Huan-Lin, Wei-Che Chang, and Deng-Fong Lin. "The effects of different types of nano-silicon dioxide additives on the properties of sludge ash mortar." Journal of the Air & Waste Management Association 59.4: 440-446, 2009.
[34] Chen, Jian-Shiuh, et al. "Engineering and environmental characterization of municipal solid waste bottom ash as an aggregate substitute utilized for asphalt concrete." Journal of Materials in Civil Engineering 20.6: 432-439, 2008.
[35] Lu, Hsing-Cheng, et al. "Stabilization of copper sludge by high-temperature CuFe 2 O 4 synthesis process." Journal of hazardous materials 150.3: 504-509, 2008.
[36] Tu, Yao-Jen, et al. "Recycling of Cu powder from industrial sludge by combined acid leaching, chemical exchange and ferrite process." Journal of hazardous materials 181.1: 981-985, 2010.
[37] Shapuri, V., “Stabilization and solidifaction of hazardous waste material (heavy metals) using constructional material”, Master Thesis, Amir Kabir University of Technology, Tehran, Iran, 2006.
[38] ArevaloAranda, Consuelo Berenice. Leaching test comparison for solidified and stabilized contaminated sediments: Assessment of selected inorganic contaminants. MS thesis. 2008.