Mix Design Selection For Old and New Generation of SuprePlasticizers
Subject Areas : Structural EngineeringNavid Afshari 1 , Seiyed Ali Haj Seiyed Taghia 2
1 - 2Master of Science in Construction Management, Department of civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 - Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Keywords:
Abstract :
Yamada, K., Takahashi, T., Hanehara, S., Matsuhisa, M., “Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer”, Cem. Concr. Res, 30(2000), 197–207.
[2] Kreppelt, F., Weibel, M., Zampini, D., Romer, M., “Influence of solution chemistry on the hydration of polished clinker surfaces—a study of different types of polycarboxylic acid-based admixtures”, Cem. Concr. Res, 32 (2002), 187–198.
[3] Carazeanu, I., Chirila, E., Georgescu, M., “Investigation of the hydration process in3CaO–Al2O3–CaSO4–2H2O–plasticizer–H2O systems by X-ray diffraction”, Talanta, 57 (2002), 617–623.
[4] Yu, Y., Liu, J., Ran, Q., Qiao, M., Zhou, D., “Current understanding of comb-like copolymer dispersants impact on the hydration characteristics of C3A– gypsum suspension”, J. Therm. Anal. Calorim, 111 (2013), 437–444.
[5] Chen, S., Ting-shu, H., Zhang, G., Wang, X., Yanyan, H., “Effects of superplasticizers on carbonation resistance of concrete. Construction and Building Materials”, 108 (2016), 48–55.
[6] Toledano-Prados, M., Lorenzo-Pesqueira, M., González-Fonteboa, B., Seara-Paz, S., “Effect of polycarboxylate superplasticizers on large amounts of fly ash cements”, Constr. Build. Mater, 48 (2013), 628–635.
[7] Gołaszewski, J., Szwabowski, J., “Influence of superplasticizers on rheological behaviour of fresh cement mortars”, Cem. Concr. Res, 34 (2), 235–248, 2004.
[8] Ferrari, L., Kaufmann, J., Winnefeld, F., Plank, J., “Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements”, J. Colloid Interface Sci, 347 (1), 15–24, 2010.
[9] Puertas, F., Santos, H., Palacios, M., Martínez-Ramírez, S., “Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes”, Adv. Cem. Res, 17 (2), 77–89, 2005.
[10] Palacios, M., Puertas, F., Bowen, P., Houst, Y.F., “Effect of PCs superplasticizers on the rheological properties and hydration process of slag-blended cement pastes”, J. Mater. Sci, 44 (10), 2714–2723, 2009.
[11] Mollah, M.Y.A., Adams, W.J., Schennach, R., Cocke, D.L., “A review of cement– superplasticizer interactions and their models”, Adv. Cem. Res, 12 (4), 153–161, 2000.
[12] Yamada, K., T Takahashi, S., Matsuhisa, M., “Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer”, Cem. Concr. Res’ 30 (2), 197–207, 2000.
[13] Adjoudj, M.H., Ezziane, K., Kadri, E.H., Ngo, T.T., Kaci, A., “Evaluation of rheological parameters of mortar containing various amounts of mineral addition with polycarboxylate superplasticizer”, Constr. Build. Mater, 70 (2014), 549–559.
[14] Lange, A., Hirata, T., Plank, J., “Influence of the HLB value of polycarboxylate superplasticizers on the flow behavior of mortar and concrete”, Cem. Concr. Res, 60 (2014), 45–50.
[15] Li, Y., Yang, C., Zhang, Y., Zheng, J., Guo, H., Lu, M., “Study on dispersion, adsorption and flow retaining behaviors of cement mortars with TPEG-type polyether kind polycarboxylate superplasticizers”, Constr. Build. Mater, 64 (2014), 324– 332.
[16] Cartuxo, F., de Brito, J., Evangelista, L., Jiménez, J.R., Ledesma, E.F., “Rheological behaviour of concrete made with fine recycled concrete aggregates – influence of the superplasticizer”, Constr. Build. Mater, 89 (2015), 36–47.
[17] ASTM C150, “Standard specification for portland cement”, American Society For Testing And Materials, November 1999.
[18] ASTM C33, “Standard Specification for Concrete Aggregates”.
[19] ASTM C39, “Standard Test Method for Compressive Strength of Cylindrical Concrete, Specimens”.