Equivalent Viscous Damping in Steel Structures Equipped with Dampers.
Subject Areas : BiosafetySeyed Behdad Alehojjat 1 , Omid Bahar 2 , Masood Yakhchalian 3
1 - Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 - Structural Engineering Research Center, International Institute of Earthquake Engineering & Seismology (IIEES), Tehran, Iran
3 - Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Keywords:
Abstract :
1.Yakhchalian M., Asgarkhani N., Yakhchalian M.,
“Evaluation of deflection amplification factor for
steel buckling restrained braced frames”, Journal of
Building Engineering; 2020, 30, 101228.
https://doi.org/10.1016/j.jobe.2020.101228
2.Gulkan P., Sozen M., “Inelastic response of
reinforced concrete structures to earthquake
motions”, ACI J; 1974, 71(12), 604–610.
3.Shibata A., Sozen M., “Substitute structure method
for seismic design in reinforced concrete”, Journal
of Structural Division ASCE; 1976, 102(ST1), 1–
18.
4.Jacobsen, L.S., “Steady forced vibration as
influenced by damping”, Transactions of ASME;
1930, 52, 169–181.
5.Jacobsen, L.S., “Damping in composite structures”
Proc., 2nd World Conf. on Earthquake Engineering;
1960, Vol. 2, Science Council of Japan, Tokyo,
1029–1044.
6.Wijesundara, K.K., Nascimbene, R., Sullivan, T.J.,
“Equivalent viscous damping for steel
concentrically braced frame structures”, Bull
Earthquake Eng; 2011, 9, 1535–1558.
https://doi.org/10.1007/s10518-011-9272-4
7.Rosenblueth, E., Herrera, I., “On a kind of hysteretic
damping”, ASCE Journal of Engineering
Mechanics; 1964, 90(4), 37–48.
8.Dwairi, H.M., Kowalsky, M.J., Nau, J.M.,
“Equivalent damping in support of direct
displacement-based design”, Journal of Earthquake
Engineering; 2007, 11(4), 512‒530.
http://dx.doi.org/10.1080/13632460601033884
9.Kowalsky, M.J., Ayers, J.P., “Investigation of
equivalent viscous damping for direct displacementbased design”, The Third US-Japan Workshop on
Performance-Based Earthquake Engineering
Methodology for Reinforced Concrete Building
Structures; 16–18 August 2001, Seattle,
Washington, Berkeley: Pacific Earthquake
Engineering Research Center, University of
California, 173–185.
10.Grant, D.N., Blandon, C.A., Priestley, M.J.N.,
“Modelling inelastic response in direct
displacement-based design”, Report 2005/03, IUSS
Press, Pavia; 2005.
11.Priestley, M.J.N., Calvi, G.M., Kowalsky, M.J.,
“Displacement-Based Design of Structures”, IUSS
Press, Pavia; 2007.
12.Pennucci, D., Sullivan, T.J., Calvi, G.M.,
“Displacement Reduction Factors for the Design of
Medium and Long Period Structures”, Journal of
Earthquake Engineering; 2011, 15:S1, 1‒29.
http://dx.doi.org/10.1080/13632469.2011.562073
[12]<br style=" font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-size-adjust: auto; -web
13.Abadi, R.E., Bahar, O., “Investigation of the LS
level hysteretic damping capacity of steel MR
frames’ needs for the direct displacement-based
design method”, KSCE J. Civil Eng;
2018, 22, 1304–1315.
https://doi.org/10.1007/s12205-017-1321-3
14.Ramirez, O.M, Constantinou, M.C, Kircher, C.A.,
Whittaker, A.S., Johnson, M.W., Gomez, J.D.,
Chrysostomou, C.Z., “Development and evaluation
of simplified procedures for analysis and design of
buildings with passive energy dissipation systems”,
Report No: MCEER-00-0010 Multidisciplinary
Center for Earthquake Engineering Research
(MCEER), University of New York at Buffalo, NY.;
2001.
15.ASCE/SEI 7-16. Minimum design loads for
buildings and other structures, Reston (Virginia):
American Society of Civil Engineers; 2017.
16.Sullivan, T.J., Lago, A., “Towards a simplified
Direct DBD procedure for the seismic design of
moment resisting frames with viscous dampers”,
Engineering Structures; 2012, 35, 140-148.
https://doi.org/10.1016/j.engstruct.2011.11.010
17.Noruzvand, M., Mohebbi, M., Shakeri, K.,
“Modified direct displacement‐based design
approach for structures equipped with fluid viscous
damper”, Struct Control Health Monit; 2019, 27(1).
https://doi.org/10.1002/stc.2465
18.Moradpour, S., Dehestani, M., “Optimal DDBD
procedure for designing steel structures with
nonlinear fluid viscous dampers”, Structures; 2019,
Volume 22, 154‒174.
https://doi.org/10.1016/j.istruc.2019.08.005
19.Alehojjat, S.B., Bahar, O., Yakhchalian, M.,
“Improvements in the direct displacement-based
design procedure for mid-rise steel MRFs equipped
with viscous dampers”, Structures; 2021, Vol. 34,
1636‒1650.
https://doi.org/10.1016/j.istruc.2021.08.047
20.Priestley, M.J.N., “Myths and fallacies in
earthquake engineering conflicts between design
and reality”, Bulletin of the New Zealand National
Society for Earthquake Engineering; 1993, Vol.
26(3), 329‒341.
21.Sullivan, T.J., Priestley, M.J.N., Calvi, G.M., “A
Model Code for the Displacement-Based Seismic
Design of Structures (DBD12)”, IUSS Press, Pavia;
2007. ISBN: 978-88-6198-072-3.
22.Standard No. 2800. Iranian Code of Practice for
Seismic Resistant Design of Buildings, Standard
No. 2800, 4th edition, BHRC Publication No. S-
253, Iran, Tehran; 2014.
23.PEER, PEER NGA database, Pacific Earthquake
Engineering Research, Univ. of California,
Berkeley, CA.; 2005.
https://ngawest2.berkeley.edu/<br style=" font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0