A Benders� Decomposition Approach for Dynamic Cellular Manufacturing System in the Presence of Unreliable Machines
Subject Areas : Design of ExperimentMasoud Bagheri 1 , Saeed Sadeghi 2 , Mohammad Saidi-Mehrabad 3
1 - Ph. D Student, Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
2 - MSc, Department of Industrial Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
3 - Professor, Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran
Keywords:
Abstract :
Ameli, M. S. and Arkat, J. (2008). Cell formation with alternative process routings and machine reliability consideration. International Journal of Advanced Manufactirong Technology, 35, 761–768.
Aryanezhad, M. B., Deljoo, V. and Mirzapour Al-e-hashem, S. M. (2009). Dynamic cell formation and the worker assignment problem: a new model. International Journal of Advanced Manufacturing Technology, 41, 329–342.
Bagheri, M., Bashiri, M. (2014). A new mathematical model towards the integration of cell formation with operator assignment and inter-cell layout problems in a dynamic environment. Applied Mathematical Modeling, 38, 1237-1254.
Bagheri, M., Bashiri, M. (2014). A hybrid Genetic and Imperialist Competitive Algorithms (GICA) approach to dynamic Cellular Manufacturing System . Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228(3), 2014, 458-470.
Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4, 238–252.
Dimopoulos, C., Zalzala, A. (2000). Recent developments in evolutionary computations for manufacturing optimization: problems, solutions, and comparisons. IEEE Transactions on Evolutionary Computation, 4, 93–113.
Ghezavati, V. R., and Saidi-Mehrabad, M. (2011). An efficient hybrid self-learning method for stochastic cellular manufacturing problem: A queuing-based analysis. Expert Systems with Applications, 38, 1326-1335.
Ghotboddini, M., Rabbani, M., and Rahimian, H. (2011). A comprehensive dynamic cell formation design: Benders’ decomposition approach. Expert Systems with Applications, 38, 2478–2488.
Jolai, F., Tavakkoli-mogaddam, R., Golmohammadi, A. and Javadi, B. (2011). An Electromagnetism-like algorithm for cell formation and layout problem. Expert System with Application, 39, 2172-2182.
Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M. and Khorrami, J. (2012). Solving a group layout design model of a dynamic cellula rmanufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Computers & Operations Research, 39, 2642-2658.
kioon, S. A., Bulgak, A. A. and Bektas, T. (2009). Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration. European Journal of Operational Research, 192, 414–428.
Krishnan, K. k., Mirzaei, S., Venkatasamy, V., and Pillai, V. M. (2012). A comprehensive approach to facility layout design and cell formation. International Journal of Advanced Manufacturing Technology , 59, 737-753.
Mahdavi, I., Aalaei, A., Paydar, M. M. and Solimanpur, M. (2010). Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment. Computers and Mathematics with Applications, 60, 1014-1025.
Onwubolu, G.C., and Mutingi, M. (2001). A genetic algorithm approach to cellular manufacturing Systems. Computers & industrial engineering, 39, 125-144.
Purcheck, G.F.K. (1974). A mathematical classification as a basis for the design of group technology production cells. Production Engineer, 54, 35–48.
Saidi-Mehrabad, M., and Mirnezami-ziabari, S. M. (2011). Developing a Multi-objective Mathematical Model for Dynamic Cellular Manufacturing Systems. Journal of Optimization in Industrial Engineering , 7, 1-9.
Satuglu, S. I. and Suresh, N. C. (2009). A goal-programming approach for design of hybrid cellular manufacturing systems in dual resource constrainted environment. Computers & Industrial Engineering, 56, 560-575.
Tavakkoli-Moghaddam, R., Aryanezhad, M. B., Safaei, N. and Azaron, A. (2005). Solving a dynamic cell formation problem using meta-heuristics. Applied Mathematics and Computation, 170, 761–780.
Tavakkoli-mogaddam, R., Javadian, N., Javadi, B. and Safaei, N. (2007). Design of a facility layout problem in cellular manufacturing systems with stochastic demands. Applied Mathematical Computions, 184, 721-728.
Wu, H., Chung, S-H. Chang, C-C. (2010). A water flow-like algorithm for manufacturing cell formation problems. European Journal of Operations research, 205, 346-360.