An EOQ Model for Defective Items Under Pythagorean Fuzzy Environment
Subject Areas : Business Administration and EntrepreneurshipMitali Nayak 1 , Suchitra Patnaik 2 , Milu Acharya 3
1 - Department of Mathematics, ITER
Siksha O Anusandhan, Jagmara, Khandagiri, Bhubaneswar, Odisha
2 - Department of Mathematics, ITER
Siksha O Anusandhan, Jagmara, Khandagiri
3 - Department of Mathematics, ITER
Siksha O Anusandhan, Jagmara, Khandagiri
Keywords:
Abstract :
Atanassov, K.T.(1986) ‘Intuitionistic fuzzy sets, Fuzzy sets and Systems’ Vol.20(1), pp.87-96
Ahmadi, A., Mohabbatdar, S., & Sajadieh, M. S. (2016). Optimal manufacturer-retailer policies in a supply chain with defective products and price-dependent demand. Journal of Optimization in Industrial Engineering, 9(19), 37-46.
Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141.
Chang, H. C. (2004). An application of fuzzy sets theory to the EOQ model with imperfect quality items. Computers & Operations Research, 31(12), 2079-2092.
Chen, S. H., & Chang, S. M. (2008). Optimization of fuzzy production inventory model with unrepairable defective products. International Journal of Production Economics, 113(2), 887-894.
DE, S. K., & Mahata, G. C. (2019). A comprehensive study of an economic order quantity model under fuzzy monsoon demand. Sādhanā, 44(4), 1-12.
De, S. K. (2021). Solving an EOQ model under fuzzy reasoning. Applied Soft Computing, 99, 106892.
De, S. K., & Mahata, G. C. (2021). Solution of an imperfect-quality EOQ model with backorder under fuzzy lock leadership game approach. International Journal of Intelligent Systems, 36(1), 421-446.
Harris, F. W. (1913) ‘Operations and costs (Factory Management Series)’, A.W. Shaw Co, Chicago, pp.18-52.
Jaggi, C. K. (2014). An optimal replenishment policy for non-instantaneous deteriorating items with price-dependent demand and time-varying holding cost. International Scientific Journal on Science Engineering & Technology, 17(03).
Jaggi, C., Sharma, A., & Tiwari, S. (2015). Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand under permissible delay in payments: A new approach. International Journal of Industrial Engineering
Computations, 6(4), 481-502.
Karlin, S. (1958). One stage inventory models with uncertainty. Studies in the mathematical theory of inventory and production, 109-134.
Khanna, A., Gautam, P., & Jaggi, C. K. (2017). Inventory modeling for deteriorating imperfect quality items with selling price-dependent demand and shortage
back-ordering under credit financing. International Journal of Mathematical, Engineering and Management Sciences, 2(2), 110-124.
Karmakar, S., De, S. K., & Goswami, A. (2018). A pollution-sensitive remanufacturing model with waste items: triangular dense fuzzy lock set approach. Journal of Cleaner Production, 187, 789-803.
Maddah, B., & Jaber, M. Y. (2008). The economic order quantity for items with imperfect quality: revisited. International Journal of Production Economics, 112(2), 808-815.
Mohagheghian, E., Rasti-Barzoki, M., & Sahraeian, R. (2018). Two-Echelon Supply Chain Considering Multiple Retailers with Price and Promotional Effort Sensitive Non-Linear Demand. Journal of Optimization in Industrial Engineering, 11(2), 57-64.
Mao, X. B., Hu, S. S., Dong, J. Y., Wan, S. P., & Xu, G. L. (2018). Multi-attribute group decision-making based on cloud aggregation operators under interval-valued hesitant fuzzy linguistic environment. International Journal of Fuzzy Systems, 20(7), 2273- 2300.
Mohamadghasemi, A. (2020). A Note On “An Interval Type-2 Fuzzy Extension Of The TOPSIS Method Using Alpha Cuts”. Journal of Optimization in Industrial Engineering, 13(2), 227- 238.
Maity, S., Chakraborty, A., De, S. K., Mondal, S. P., & Alam, S. (2020) A comprehensive study of a backlogging EOQ model with the nonlinear heptagonal dense fuzzy environment. RAIRO-Operations Research, 54(1), 267-286.
Peng, X., & Yang, Y. (2015). Some results for Pythagorean fuzzy sets. International Journal of Intelligent Systems, 30(11), 1133-1160.
Peng, X., & Selvachandran, G. (2019). Pythagorean fuzzy set: state of the art and future directions. Artificial Intelligence Review, 52(3), 1873-1927.
Peng, X. (2019). New operations for interval-valued Pythagorean fuzzy set. Scientia Iranica.Transaction E, Industrial Engineering, 26(2), 1049-1076.
Patro, R., Nayak, M. M., & Acharya, M. (2019). An EOQ model for fuzzy defective rate with allowable proportionate discount. O psearch, 56(1), 191-215.
Pal, S., & Chakraborty, A. (2020). Triangular neutrosophic-based EOQ model for non-instantaneous deteriorating item under shortages. Am J Bus Oper Res, 1(1), 28-35.
Pattnaik, S, & Nayak, M. (2021). Linearly Deteriorating EOQ Model for Imperfect Items with Price Dependent Demand Under Different Fuzzy Environments. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(13), 5328-5349.
Rosenblatt, M. J., & Lee, H. L. (1986). Economic production cycles with imperfect production processes. IIE transactions, 18(1), 48-55.
Salameh, M. K., & Jaber, M. Y. (2000). Economic production quantity model for items with imperfect quality. International journal of production economics, 64(1-3), 59-64.
Singh, S. R., & Singh, C. (2008). Fuzzy inventory model for finite rate of replenishment using signed distance method. International Transactions in Mathematical Sciences and Computer, 1(1), 21-30.
Shekarian, E., Olugu, E. U., Abdul-Rashid, S. H., & Kazemi, N. (2016). An economic order quantity model considering different holding costs for imperfect quality items subject to fuzziness and learning. Journal of Intelligent & Fuzzy Systems, 30(5), 2985-2997.
Shekarian, E., Kazemi, N., Abdul-Rashid, S. H., & Olugu, E. U. (2017). Fuzzy inventory models: A comprehensive review. Applied Soft Computing, 55, 588-621.
Wee, H. M., Yu, J., & Chen, M. C. (2007). Optimal inventory model for items with imperfect quality and shortage backordering. Omega, 35(1), 7-11.
Wahab, M. I. M., & Jaber, M. Y. (2010). Economic order quantity model for items with imperfect quality, different holding costs, and learning effects: A note. Computers & Industrial Engineering, 58(1), 186-190.
Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information sciences, 24(2), 143-161.
Zadeh, L.A. (1965).Fuzzy set information and control. 8(3), 338- 353.