Failure Mode and Effect Analysis using Robust Data Envelopment Analysis (Case Study: Automobile Oil Filter)
Subject Areas : Business AdministrationNasser Safaie 1 , Seyed Amir Nasri 2
1 - Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran
2 - Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran
Keywords:
Abstract :
Charnes, A., Cooper, W.W., Rhodes, E., (1978). Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (6), 429–444.
Soyster, A.L.,(1973). Technical note—convex programming with set-inclusive constraints and applications to inexact linear programming. Operat. Res. 21 (5), 1154–1157.
Ho, C-H. & C-J. Liao (2011). “The use of failure mode and effects analysis to construct an effective disposal and prevention mechanism for infectious hospital waste”. Waste Management, 31(12), 2631-2637.
Zadeh Lotfi A. (1965) "Fuzzy sets", Information and control, 8 (3), pp. 338-353.
Liu, H-C.; Liu, L. Bian, Q-H. Lin, Q-L. Dong, N. & P-H. Xu (2011). “Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory”. Expert Systems with Applications, 38(4), 4403-4415.
jahangoshai Rezaee, M., Yousefi, S., Eshkevari, M. et al. Risk analysis of health, safety and environment in chemical industry integrating linguistic FMEA, fuzzy inference system and fuzzy DEA. Stoch Environ Res Risk Assess 34, 201–218 (2020)
Yazdi, M. Improving failure mode and effect analysis (FMEA) with consideration of uncertainty handling as an interactive approach. Int J Interact Des Manuf 13, 441–458. (2019)
Yang, S., Bian, C., Li, X. et al. Optimized fault diagnosis based on FMEA-style CBR and BN for embedded software system. Int J Adv Manuf Technol 94, 3441–3453.(2018)
Nazeri, A., Naderikia, R. A new fuzzy approach to identify the critical risk factors in maintenance management. Int J Adv Manuf Technol 92, 3749–3783. (2017)
Chang, D.S., Paul Sun, K.L., (2009). Applying DEA to enhance assessment capability of FMEA. Int. J. Qual. Reliab. Manage. 26 (6), 629–643.
Chang, D.S., Chung, J.H., (2012). Risk evaluation of group package tour service failures that result in third-Party complaints. J. Travel Tourism Mark. 29 (8), 817–834.
Chin, K.S., Wang, Y.M., Poon, G.K.K., Yang, J.B., Failure mode and effects analysis by data envelopment analysis. Decis. Support Syst. 48 (1), 246–256. (2009)
Boral, S., Howard, I., Chaturvedi, S., McKee, K., Naikan, V., A novel hybrid multi-criteria group decision making approach for failure mode and effect analysis: An essential requirement for sustainable manufacturing., Sustainable Production and Consumption., 21 (2020) 14–32
Wang L, Yan F, Wang F, Li Z, FMEA-CM based quantitative risk assessment for process industries—A case study of coal-to-methanol plant in China, Process Safety and Environmental Protection . (2020)
Safari, H., Faraji, Z. & Majidian, S. Identifying and evaluating enterprise architecture risks using FMEA and fuzzy VIKOR. J Intell Manuf 27, 475–486 .(2016)
Liu, H., Xin You, J., Yue You., Shan, M. (2014). A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method,
Wan, C., Yan, X., Zhang, D., Qu, Z., Yang, Z., (2019). An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks., Transportation Research Part E., 125, 222-240.
Tu PY, Yam R, Tse P, Sun AO (2001) An integrated maintenance management system for an advanced manufacturing company. Int J Adv Manuf Technol 17(9):692–703.
Vinodh, S., Santhosh, D. (2011). Application of FMEA to an automotive leaf spring manufacturing organization, TQM Journal, Vol. 24, No. 3, 260-274
Baghery, M., Yousefi, S., Rezaee, M.J., 2016. Risk measurement and prioritization of auto parts manufacturing processes based on process failure analysis, interval data envelopment analysis and grey relational analysis. J. Intell. Manuf.
Yousefi, S., Alizadeh, A., Hayati, J., Baghery, M., 2018. HSE risk prioritization using robust DEA-FMEA approach with undesirable outputs: A study of automotive parts industry in Iran. Safety Science. 102, 144-158.
Mhetre R.S., Dhake, R.J. (2012), Using failure mode effect analysis in precision sheet metal parts manufacturing company, International Journal of Applied Sciences and Engineering Research, 2012; 1(2), 302-311.
Ambekar, S.B. Edlabadkar A. & Shrouty, V. (2013), A Review: Implementation of Failure Mode and Effect Analysis, International Journal of Engineering and Innovative Technology (IJEIT,) 2 (8), February, 38
Lo, HW., Shiue, W., Liou, J.J.H. et al. A hybrid MCDM-based FMEA model for identification of critical failure modes in manufacturing. Soft Comput 24, 15733–15745 (2020).
Wang, W., Liu, X., Chen, X., Qin, Y., (2019), Risk assessment based on hybrid FMEA framework by considering decision-maker r’s psychological behavior character, Computers& Industrial Engineering. 136, 516-527
Arash Geramian, Ajith Abraham & Mojtaba Ahmadi Nozari (2018): Fuzzy logic-based FMEA robust design: a quantitative approach for robustness against groupthink in group/team decision-making, International Journal of Production Research,
Qin, J., Xi, Y., Pedrycz, W., (2020), Failure mode and effects analysis (FMEA) for risk assessment based on
interval type-2 fuzzy evidential reasoning method, Applied Soft Computing Journal. 89, 106-134.
Li, H., Diaz, H., Soares, C., A failure analysis of floating offshore wind turbines using AHP-FMEA methodology, Ocean Engineering. 234, 109-126
Shaghaghia, M., Rezaie, K., (2012), Failure Mode and Effects Analysis Using Generalized Mixture Operators, Journal of Optimization in Industrial Engineering. 5, 1-10.
Dedimas, T., Gebeyehu, S., (2019), Application of Failure Mode Effect Analysis (FMEA) for Efficient and Cost-effective Manufacturing: A Case Study at Bahir Dar Textile Share Company, Ethiopia, Journal of Optimization in Industrial Engineering. 12, 23-29.