A Fractile Model for Stochastic Interval Linear Programming Problems
Subject Areas : Urban PlanningHadi Nasseri 1 , Salim Bavandi 2
1 - Department of Mathematics, University of Mazandaran, Babolsar, Iran
2 - Department of Mathematics, University of Mazandaran, Babolsar, Iran
Keywords:
Abstract :
Bavandi, S., Nasseri, S.H., & Triki, C. (2020). Optimal Decision Making in Fuzzy Stochastic Hybrid Uncertainty Environments and Their Application in Transportation Problems. In: Cao B. (eds) Fuzzy Information and Engineering-2019. Advances in Intelligent Systems and Computing,1094. Springer, Singapore. https://doi.org/10.1007/978-981-15-2459-2_5.
Bhurjee, A.K., & Panda, G. (2016). Sufficient optimality conditions and duality theory for interval optimization problem. Ann. Oper. Res. 243(1), 335–348.
Casella, G & Berger, R.L. (2001). Statistical Inference. DuxburyPress.
Chanas, S & Kuchta, D. (1996). Multiobjective programming in optimization of interval objective functions - a generalized approach, European Journal of Operational Research, Volume 94 Pages 594-598.
Charnes, A., & Cooper, W. W. (1959). Chance constrained programming. Management Science, 6,73–79.
Charnes, A., & Cooper, W. W. (1963). Deterministic equivalents for optimizing and satisficing under chance constraints. Operations Research, 11, 18–39.
Gen, M., & Cheng, R. (1997). Genetic Algorithms and Engineering Design. New York: Wiley.
Geoffrion, A. M. (1967). Stochastic programming with aspiration or fractile criteria. Management Science, 13, 672–679.
Grimmett, G. R., & Stirzaker, D. R. (2001). Probability and Random Processes. Oxford University Press.
Hildenbrand, W. (1975). Core and Equilibria of a Large Economy. Princeton: Princeton University Press, 85, 672-674.
Hladik, M. (2015). AF solutions and AF solvability to general interval linear systems. Linear Algebra Appl, 465, 221-238.
Hladik, M. (2014). How to determine basis stability in interval linear programming. Optim. Lett. 8, 375-389.
Inuiguchi, M., & Kume, Y. (1994).Minimax regret solution to linear programming problems with an interval objective function. Eur. j. Oper. Res., 86,526 - 539.
Ishibuchi, H., & Tanaka, H. (1989). Formulation and analysis of linear programming problem with interval coefficients, J. Jpn. Ind. Manage. Assoc., vol. 40, pp. 320329.
Jana, M., & Panda, G. (2014). Solution of nonlinear interval vector optimization problem. Oper. Res. 14(1), 71–85.
Kall, P., & Mayer, J. (2004). Stochastic Linear Programming. Springer.
Kataoka, S. (1963). A stochastic programming model. Econometrica, 31, 181–196.
Knill,O. (2009). Probability Theory and Stochastic Processes with Applications, Overseas Press.
Kruse R., & Meyer, K. D. (1987). Solving nonlinear interval optimization problem using stochastic programming technique. OPSEARCH, 54, 752–765 (2017).
Matheron, G. (1975). Random Sets and Integral Geometry. New York: John Wiley & Sons.
Miranda, E., Couso, I., & Gil, P. (2005). Random intervals as a model for imprecise information. Fuzzy Sets and Systems, 154, 386-412.
Moore, E. R., Kearfott, R. B., & Cloud, M. J. (2009). “Introduction to INTERVAL ANALYSIS,”Siam, Philadelphia.
Nasseri, S. H., & Bavandi, S. (2018). Amelioration of Verdegay̕s approach for fuzzy linear programs with stochastic parameters. Iranian Journal of Management Studies, 11(1), 71-89. doi: 10.22059/ijms.2018.236147.672722.
Nasseri S. H., & Bavandi S. (2017). A Suggested Approach for Stochastic Interval-Valued Linear Fractional Programming problem. International Journal of Applied Operational Research. 7 (1):23-31.
S. H. Nasseri & S. Bavandi (2019). Fuzzy Stochastic Linear Fractional Programming based on Fuzzy Mathematical Programming, Fuzzy Information and Engineering. DOI: 10.1080/16168658.2019.1612605.
Sakawa, M., Yano, H., & Nishizaki, I. (2013). Linear and Multiobjective Programming with Fuzzy Stochastic Extensions, Springer.
Sengupta, A., Pal, T. K., & Chakraborty, D. (2001). Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming, Fuzzy Sets and Systems, 119(1), 129-138.
Shaocheng, T. (1994). Interval number and fuzzy number linear programming. Fuzzy Sets and Systems, 66, 301-306.
Subulan, K. (2020). An interval-stochastic programming based approach for a fully uncertain multi-objective and multi-mode resource investment project scheduling problem with an application to ERP project implementation, Expert Systems With Applications, doi:10.1016/j.eswa.2020.113189
Suprajitno, H., & Mohd, I. B. (2008). Interval Linear Programming, presented in IsCoMS-3, Bogor, Indonesia.
Wang, L., & Jin, L. (2019). An interval type-2 fuzzy stochastic approach for regional-scale electric power system under parameter uncertainty, International Journal of Green Energy, 16(8), 627-638.1.