Identifying and Evaluating Effective Factors in Green Supplier Selection using Association Rules Analysis
Subject Areas : Executive ManagementMohammad Amin Adibi 1 , Nima Esfandyari 2
1 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Keywords:
Abstract :
Adibi, M. A., & Shahrabi, J. (2015). Online anomaly detection based on support vector clustering. International Journal of Computational Intelligence Systems, 8(4), 735-746.
Alinezhad, A., Adibi, M. A., & Tohidi, A. (2019). Classification of Streaming Fuzzy DEA Using Self-Organizing Map. Journal of Optimization in Industrial Engineering, 12(1), 53-61.
Chang, B., & Hung, H. F. (2010). A study of using RST to create the supplier selection model and decision-making rules. Expert Systems with Applications, 37(12), 8284-8295.
Chen, C. H., Lan, G. C., Hong, T. P., & Lin, S. B. (2016). Mining fuzzy temporal association rules by item lifespans. Applied Soft Computing, 41, 265-274.
Chen, L. Y., & Wang, T. C. (2009). Optimizing partners’ choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR. International Journal of Production Economics, 120(1), 233-242.
Delgado, M., SáNchez, D., MartıN-Bautista, M. J., & Vila, M. A. (2001). Mining association rules with improved semantics in medical databases. Artificial Intelligence in Medicine, 21(1-3), 241-245.
Guo, X., Yuan, Z., & Tian, B. (2009). Supplier selection based on hierarchical potential support vector machine. Expert Systems with Applications, 36(3), 6978-6985.
Gupta, S., Soni, U., & Kumar, G. (2019). Green supplier selection using multi-criterion decision making under fuzzy environment: A case study in automotive industry. Computers & Industrial Engineering, 136, 663-680.
Haeri, S. A. S., & Rezaei, J. (2019). A grey-based green supplier selection model for uncertain environments. Journal of cleaner production, 221, 768-784.
Hong, T. P., & Chen, J. B. (1999). Finding relevant attributes and membership functions. Fuzzy Sets and systems, 103(3), 389-404.
Hong, T. P., Lin, K. Y., & Wang, S. L. (2003). Fuzzy data mining for interesting generalized association rules. Fuzzy sets and systems, 138(2), 255-269.
Jain, R., Singh, A. R., Yadav, H. C., & Mishra, P. K. (2014). Using data mining synergies for evaluating criteria at pre-qualification stage of supplier selection. Journal of Intelligent Manufacturing, 25(1), 165-175.
Kamsu-Foguem, B., Rigal, F., & Mauget, F. (2013). Mining association rules for the quality improvement of the production process. Expert systems with applications, 40(4), 1034-1045.
Kumari, R., & Mishra, A. R. (2020). Multi-criteria COPRAS Method Based on Parametric Measures for Intuitionistic Fuzzy Sets: Application of Green Supplier Selection. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 1-18.
Lau, H. C., Ho, G. T., Chu, K. F., Ho, W., & Lee, C. K. (2009). Development of an intelligent quality management system using fuzzy association rules. Expert Systems with Applications, 36(2), 1801-1815.
Lau, H. C., Ho, G. T., Zhao, Y., & Chung, N. S. H. (2009). Development of a process mining system for supporting knowledge discovery in a supply chain network. International Journal of Production Economics, 122(1), 176-187.
Lee, A. H., Kang, H. Y., Hsu, C. F., & Hung, H. C. (2009). A green supplier selection model for high-tech industry. Expert systems with applications, 36(4), 7917-7927.
Lin, R. H., Chuang, C. L., Liou, J. J., & Wu, G. D. (2009). An integrated method for finding key suppliers in SCM. Expert Systems with Applications, 36(3), 6461-6465.
Liu, B., Hsu, W., & Ma, Y. (1999, August). Mining association rules with multiple minimum supports. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 337-341). ACM.
Manohar, H. L., & Kumar, R. G. (2020). A neural networks model for green supplier selection. International Journal of Services and Operations Management, 35(1), 1-11.
Noci, G. (1997). Designing green vendor rating systems for the assessment of a supplier's environmental performance. European Journal of Purchasing & Supply Management, 3(2), 103-114.
Prosman, E. J., & Sacchi, R. (2018). New environmental supplier selection criteria for circular supply chains: Lessons from a consequential LCA study on waste recovery. Journal of Cleaner Production, 172, 2782-2792.
Sahebjamnia, N., Goodarzian, F., & Hajiaghaei-Keshteli, M. (2020). Optimization of Multi-period Three-echelon Citrus Supply Chain Problem. Journal of Optimization in Industrial Engineering, 13(1), 39-53.
Salleb-Aouissi, A., Vrain, C., & Nortet, C. (2007, January). QuantMiner: A Genetic Algorithm for Mining Quantitative Association Rules. In IJCAI (Vol. 7, pp. 1035-1040).
Tsay, Y. J., & Chiang, J. Y. (2005). CBAR: an efficient method for mining association rules. Knowledge-Based Systems, 18(2-3), 99-105.
Tseng, M. L., & Chiu, A. S. (2013). Evaluating firm's green supply chain management in linguistic preferences. Journal of cleaner production, 40, 22-31.
Tuzkaya, G., Ozgen, A., Ozgen, D., & Tuzkaya, U. R. (2009). Environmental performance evaluation of suppliers: A hybrid fuzzy multi-criteria decision approach. International Journal of Environmental Science & Technology, 6(3), 477-490.
Wang, L., Meng, J., Xu, P., & Peng, K. (2018). Mining temporal association rules with frequent item sets tree. Applied Soft Computing, 62, 817-829.
Yeh, W. C., & Chuang, M. C. (2011). Using multi-objective genetic algorithm for partner selection in green supply chain problems. Expert Systems with applications, 38(4), 4244-4253.
Yuan, X. (2017, March). An improved Apriori algorithm for mining association rules. In AIP conference proceedings (Vol. 1820, No. 1, p. 080005). AIP Publishing LLC.