Bi-objective Optimization of a Multi-product multi-period Fuzzy Possibilistic Capacitated Hub Covering Problem: NSGA-II and NRGA Solutions
Subject Areas : TectonostratigraphyZahra Rajabi 1 , Soroush Avakh Darestani 2
1 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 - Department of Industrial Engineering, , Qazvin Branch, IslamicAzad University, Qazvin, Iran
Keywords:
Abstract :
Aljadaan, O., Rajamani, L., &Rao, C. (2008). Non-Dominated ranked genetic algorithm for solving constrained multi-objective optimization problems. Journal of Theoretical and Applied Information Technology, 640- 651.
Calik, H., Alumur, S., Kara, B., &Karasan, O. (2009). A tabu-search heuristic for the hub covering problem over incmplete hub networks.Computers & Operation Research, 3088-3096.
Campbell, J. (1994). Integer programming formulations of discrete hub location problems.European Journal of Operational Research, 72, 387-405.
Correia, I., Nickel, S., &Saldanha-da-Gama, F. S. (2013). Multi-product Capacitated Single-Allocation Hub Location Problems: Formulation and Inequalities. Networks and Spatial Economics, 1-25.
Correia, I., Nickel, S. and Saldanha-da Gama, F. (2018). A stochastic multi-priod capacitated multiple allocation hub location problem: Formulation and inequalities. Omega, 74, 122-138.
Davari, S., &Zarandi, M. H. F. (2013).The Single-Allocation Hierarchical Hub-Median Problem with Fuzzy Flows. Paper presented at the Proceedings of the 5th International Workshop Soft Computing Applications (SOFA)(pp. 165-181), Heidelberg: Springer-Verlag.
Damgacioglu, H., EvinOzdemirel, N. and Iyigun, C. (2015 A genetic algorithm for the uncapacitated single allocation planer hub location problem. Computer and Operations Research, 62, 224-236.
Deb, K., Pratap, A., Agarwal, S., &Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary computation, 6(2), 182-197.
Dukkanci, k., Kara, B. (2017).Rouring and scheduling decisions in the hierarchical hub location problem.Computer and Operations Research, 85, 45-57.
Ernast, A., Jiang, H., &Krishnamoorthy, M. (2005). Reformulation and computational results for uncapacitated single and multiple allocation hub covering problem. Unpublished Report, CSIRO Mathematical and Information Sciences. Australia.
Gelareh, S., Nickel, S. (2015). Multi-priod hub location problems in transportation.Transportation Research Part E: Logistics and Transportation Review, 75, 67-94.
Ghodratnama, A., Tavakkoli-Moghaddam, R., &Azaron, A. (2013).A fuzzy possibilistic bi-objective hub covering problem considering production facilities, time horizons and transporter vehicles.International Journal of Advanced Manufacturing Technology, 66, 187-206.
Jimenez, M. (1996).Ranking fuzzy numbers through the comparison of its expected intervals.International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, 4(4), 379-388.
Jimenez, M., Arenas, M., Bilbao, A., & Rodriguez, M. V. (2007). Linear programming with fuzzy parameters:An interactive method resolution. European Journal of Operational Research, 177, 1599-1609.
Kara, B., &Tansel, B. (2003). The Single-Assignment Hub Covering Problem: Models and Linearizations. The Journal of the Operational Research Society, 54(1), 59-64.
Karimi, H., &Bashiri, M. (2011).Hub covering location problems with different coverage types.ScientiaIranica, 1571-1578.
Karimi, M., Eydi, A. R. and Korani, E. (2014). Modeling of the Capacitated Single Allocation Hub Location Problem with a Hierarchical Approch .International Journal of Engineering, 27(4), 573-586.
Korani, E., &Sahraeian, R. (2013).The hierarchical hub covering problem with an innovative allocation procedure covering radiuses.ScientiaIranica, 20(6), 2138-2160.
Mohammadi, M., Jolai, F., &Tavakkoli-Moghaddam, R. (2013).Solving a new stochastic multi-model p-hub covering location problem considering risk by a novel multi-objective algorithm.Applied Mathematical Modelling, 37, 10053-10073.
Parra, M. A., Terol, A. B., Galdish, B. P., &Uria, M. V. (2005). Solving a multiobjectivepossibilistic problem through compromise programming.European Journal of Operational Research, 164, 748-759.
Pishvaee, M. S., &Torabi, S. A. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets and Systems, 161, 2668-2683.
Randall, M. (2008). Solution approaches for the capacitated single allocation hub location problem using ant colony optimization. Computational Optimization and Applications, 39 (2), 239-261.
Taghipourian, F., Mahdavi, I., Mahdavi-Amiri, N., &Makui, A. (2012).A fuzzy programming approach for dynamic virtual hub location problem.Applied Mathematical Modelling, 36, 3257-3270.
Tavakkoli-Moghaddam, R., Ghalipour-Kanani, Y., &Shahramifar, M. (2013). A Multi-objective Imperialist Competitive Algorithm for a Capacitated Single-allocation Hub Location Problem International Journal of Engineering, 26(6), 605-620.
Wagner, B. (2008). Model formulation for hub covering problems.Journal of the Operational Research Society, 932-938.
Yaman, H. (2009). The hierarchical hub median problem with single assignment.Transportation Research Part B, 43, 643-658.