Multi-response Optimization of Grooved Circular Tubes Filled with Polyurethane Foam as Energy Absorber
Subject Areas : TectonostratigraphyShima Shahravi 1 , Mohammad Javad Rezvani 2 , Ali Jahan 3
1 - Faculty of Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran.
2 - Department of Mechanical Engineering, Faculty of Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran.
3 - Department of Industrial Engineering, Faculty of Engineering, Semnan Brach, Islamic Azad University, Semnan, Iran
Keywords:
Abstract :
Ashby, M. F., & Medalist, R. M. (1983). The mechanical properties of cellular solids. Metallurgical Transactions A, 14(9), 1755-1769.
Avalle, M., Belingardi, G., & Ibba, A. (2007). Mechanical models of cellular solids: parameters identification from experimental tests. International Journal of Impact Engineering, 34(1), 3-27.
Avalle, M., Belingardi, G., & Montanini, R. (2001). Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. International Journal of Impact Engineering, 25(5), 455-472.
Bahraminasab, M., Sahari, B. B., Edwards, K. L., Farahmand, F., Hong, T. S., Arumugam, M., & Jahan, A. (2014). Multi-objective design optimization of functionally graded material for the femoral component of a total knee replacement. Materials & Design, 53, 159-173.
Damghani Nouri, M., & Rezvani, M. J. (2012). Experimental Investigation of Polymeric Foam and Grooves Effects on Crashworthiness Characteristics of Thin-Walled Conical Tubes. Experimental Techniques, no-no. doi:10.1111/j.1747-1567.2012.00825.x
Daneshi, G. H., & Hosseinipour, S. J. (2002). Grooves effect on crashworthiness characteristics of thin-walled tubes under axial compression. Materials & design, 23(7), 611-617.
Eyvazian, A., K. Habibi, M., Hamouda, A. M., & Hedayati, R. (2014). Axial crushing behavior and energy absorption efficiency of corrugated tubes. Materials & Design, 54, 1028-1038. doi:10.1016/j.matdes.2013.09.031
Hanssen, A., & Langseth, M. (1996). Development in aluminium based crash absorption components. Paper presented at the Norwegian–French Industrial Conference, Paris.
Hanssen, A., Langseth, M., & Hopperstad, O. (1999). Static crushing of square aluminium extrusions with aluminium foam filler. International Journal of Mechanical Sciences, 41(8), 967-993.
Hanssen, A. G., Langseth, M., & Hopperstad, O. S. (2000). Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering, 24(5), 475-507.
Hosseinipour, S., & Daneshi, G. (2004). Experimental studies on thin-walled grooved tubes under axial compression. Experimental mechanics, 44(1), 101-108.
Hosseinipour, S. J., & Daneshi, G. H. (2003). Energy absorbtion and mean crushing load of thin-walled grooved tubes under axial compression. Thin-Walled Structures, 41(1), 31-46. doi:10.1016/s0263-8231(02)00099-x
Hosseinipour, S. J., & Daneshi, G. H. (2004). Experimental studies on thin-walled grooved tubes under axial compression. Experimental mechanics, 44(1), 101-108.
Jahan, A., Ismail, M. Y., & Noorossana, R. (2010). Multi response optimization in design of experiments considering capability index in bounded objectives method. Journal of Scientific & Industrial Research, 69, 11-16.
Marzbanrad, J., & Ebrahimi, M. R. (2011). Multi-Objective Optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks. Thin-Walled Structures, 49(12), 1605-1615. doi:10.1016/j.tws.2011.08.009
Mirzaei, M., Shakeri, M., Sadighi, M., & Seyedi, S. (2011). Multi-objective optimization of crashworthiness of cylindrical tubes as energy absorbers. Iranian Journal of Mechanical Engineering (English), 12(1), 5-18.
Niknejad, A., Abedi, M. M., Liaghat, G. H., & Zamani Nejad, M. (2012). Prediction of the mean folding force during the axial compression in foam-filled grooved tubes by theoretical analysis. Materials & Design, 37, 144-151. doi:10.1016/j.matdes.2011.12.032
Reid, S., Reddy, T., & Gray, M. (1986). Static and dynamic axial crushing of foam-filled sheet metal tubes. International Journal of Mechanical Sciences, 28(5), 295-322.
Rezvani, M., Nouri, M. D., & Rahmani, H. (2012). Experimental and numerical investigation of grooves shape on the energy absorption of 6061–T6 aluminium tubes under axial compression. International Journal of Materials and Structural Integrity, 6(2), 151-168.
Rezvani, M. J., & Nouri, M. D. (2013). Axial Crumpling of Aluminum Frusta Tubes with Induced Axisymmetric Folding Patterns. Arabian Journal for Science and Engineering, 39(3), 2179-2190. doi:10.1007/s13369-013-0734-7
Rezvani, M. J., Nouri, M. D., & Rahmani, H. (2012). Experimental and numerical investigation of grooves shape on the energy absorption of 6061-T6 aluminium tubes under axial compression. International Journal of Materials and Structural Integrity, 6(2), 151-168.
Salehghaffari, S., Rais-Rohani, M., & Najafi, A. (2011). Analysis and optimization of externally stiffened crush tubes. Thin-Walled Structures, 49(3), 397-408.
Seitzberger, M., Rammerstorfer, F. G., Gradinger, R., Degischer, H., Blaimschein, M., & Walch, C. (2000). Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. International Journal of Solids and Structures, 37(30), 4125-4147.
Shakeri, M., Mirzaeifar, R., & Salehghaffari, S. (2007). New insights into the collapsing of cylindrical thin-walled tubes under axial impact load. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(8), 869-885.
Thornton, P. (1980). Energy absorption by foam filled structures (0148-7191). Retrieved from
Vaughn, N. A. (2007). Design-Expertآ® software. Stat-Ease, Inc, Minneapolis, MN.
Yamada, Y., Banno, T., Xie, Z., & Wen, C. (2005). Energy absorption and crushing behaviour of foam-filled aluminium tubes. Materials transactions, 46(12), 2633.
Zarei, H. R., & Kröger, M. (2006). Multiobjective crashworthiness optimization of circular aluminum tubes. Thin-Walled Structures, 44(3), 301-308. doi:10.1016/j.tws.2006.03.010