Classification of Streaming Fuzzy DEA Using Self-Organizing Map
Subject Areas : Urban PlanningAlireza Alinezhad 1 , Mohammad Amin Adibi 2 , Amine Tohidi 3
1 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
3 - Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Keywords:
Abstract :
Adibi, M. A., & Shahrabi, J. (2015). Online Anomaly Detection Based on Support Vector Clustering. International Journal of Computational Intelligence Systems, 8(4), 735-746.
Adibi, M. A., & Shahrabi, J. A time-varying quadratic programming for online clustering of streaming data. Pattern Analysis and Applications, 1-10. doi:10.1007/s10044-017-0608-9
Aliahmadipour, L., Torra, V., & Eslami, E. (2017). On Hesitant Fuzzy Clustering and Clustering of Hesitant Fuzzy Data. In Fuzzy Sets, Rough Sets, Multisets and Clustering (pp. 157-168). Springer International Publishing.
Chen, T. Y., Ku, T. C., &Tsui, C. W. (2008). Determining attribute importance based on triangular and trapezoidal fuzzy numbers in (z) fuzzy measures. In The 19th international conference on multiple criteria decision making (pp. 75-76).
Colubi, A., González-Rodríguez, G., Gil, M. Á., &Trutschnig, W. (2011). Nonparametric criteria for supervised classification of fuzzy data.International Journal of Approximate Reasoning, 52(9), 1272-1282.
Forghani, Y., SadoghiYazdi, H., &Effati, S. (2013). Classification of fuzzy data based on the support vector machines. Expert Systems, 30(5), 403-417.
Guerrero-Enamorado, A., Morell, C., Noaman, A. Y., & Ventura, S. (2016). An algorithm evaluation for discovering classification rules with gene expression programming. International Journal of Computational Intelligence Systems, 9(2), 263-280.
Jiang, C., & Lin, W. (2015). DEARank: a data-envelopment-analysis-based ranking method. Machine Learning, 101(1-3), 415-435.
León, T., Liern, V., Ruiz, J. L., &Sirvent, I. (2003). A fuzzy mathematical programming approach to the assessment of efficiency with DEA models.Fuzzy sets and systems, 139(2), 407-419.
Lofberg, J. (2010). Yalmip.
Mena-Torres, D., & Aguilar-Ruiz, J. S. (2014). A similarity-based approach for data stream classification.Expert Systems with Applications, 41(9), 4224-4234.
Pendharkar, P. C. (2011). A hybrid radial basis function and data envelopment analysis neural network for classification.Computers & Operations Research, 38(1), 256-266.
Pendharkar, P. C., &Troutt, M. D. (2014). Interactive classification using data envelopment analysis.Annals of Operations Research, 214(1), 125-141.
Quost, B., &Denœux, T. (2016). Clustering and classification of fuzzy data using the fuzzy EM algorithm.Fuzzy Sets and Systems, 286, 134-156.
Shahraki, H., &Zahiri, S. H. (2015, March). Particle swarm classifier for fuzzy data sets. In Artificial Intelligence and Signal Processing (AISP), 2015 International Symposium on (pp. 295-299). IEEE.
Wei, Q., Chang, T. S., & Han, S. (2014). Quantile–DEA classifiers with interval data.Annals of Operations Research, 217(1), 535-563.
Yan, H., & Wei, Q. (2011). Data envelopment analysis classification machine.Information Sciences, 181(22), 5029-5041.
Yang, L. H., Wang, Y. M., Lan, Y. X., Chen, L., & Fu, Y. G. (2017). A data envelopment analysis (DEA)-based method for rule reduction in extended belief-rule-based systems. Knowledge-Based Systems, 123, 174-187.
Yazdi, H. S., Yazdi, M. S., &Vahedian, A. (2009). Fuzzy Bayesian classification of LR Fuzzy numbers. International Journal of Engineering and Technology, 1(5), 415.
Zhang, Y., Yang, C., Yang, A., Xiong, C., Zhou, X., & Zhang, Z. (2015). Feature selection for classification with class-separability strategy and data envelopment analysis. Neurocomputing, 166, 172-184.