EMCSO: An Elitist Multi-Objective Cat Swarm Optimization
Subject Areas : AdvertisingMaysam Orouskhani 1 , Mohammad Teshnehlab 2 , Mohammad Ali Nekoui 3
1 - Department of computer engineering, Science and Research branch, Islamic azad university, Tehran, Iran
2 - Industrial Control Center of Excellence, Electrical Engineering Department, K. N. Toosi University, Tehran, Iran
3 - Industrial Control Center of Excellence, Electrical Engineering Department, K. N. Toosi University, Tehran, Iran
Keywords:
Abstract :
Abbasian, M., & Nezamabadipour, H. (2012). Multi-objective gravitational search algorithm using non-dominated fronts. Journal of electrical engineering, Vol 41, No 1 (in Persian).
Abdi, S., Teshnehlab, M., Aliyari, M., & Golahmadi, H. (2012). Designing a multi-objective optimization algorithm with BBO/DE (in persian). Intelligent systems in electrical engineering, No3.
Ali, M., Pant, M., & Abraham, A. (2009). A modified differential evolution algorithm and its application to engineering problems. In: Proceedings of International Conference of Soft Computing and Pattern Recognition (SoCPaR-2009), , (pp. pp.196–201).
Ali, M., Siarry, P., & Pant, M. (2012). An efficient Differential Evolution based algorithm for solving multi-objective optimization problems. European Journal of Operational Research 217, 404–416.
Bagherinejad, J., & Dehghani, M. (2016). A Non-dominated Sorting Ant Colony Optimization Algorithm Approach to the Bi-objective Multi-vehicle Allocation of Customers to Distribution Centers. Journal of Optimization in Industrial Engineering, Volume 9, Issue 19, Page 61-74.
Charnes, A. (1997). Goal programming and multiple objective optimization,. European journal of operational research. 1, , 39–54.
Chu, S., & Roddick, J. (2004). Ant colony system with communication strategies. Information Sciences 167, 63-76.
Chu, S., Tsai, P., & Pan, J. (2006). Cat Swarm Optimization. LNAI 4099, 3 (1), Berlin Heidelberg: Springer-Verlag, (pp. pp. 854–858).
Coello, A. C., Gary, B., & Veldhuisen, A. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems.
Coello, C. (2004). Handling multi objectives with pso, . Evolutionary Computation, IEEE Transactions on (Volume:8 , Issue: 3 ).
Deb, K. (2002). A Fast and Elitist Multiobjective Genetic Algorithm. IEEE Transactions On Evolutionary Computation, Vol. 6, NO. 2.
Deb, K. (2002). MultiObjective optimization using evolutionary algorithms. Wiely.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.
Dorigo, M., & Gambardella, L. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. On Evolutionary Computation. 26 (1) , 53-66.
Engelbrecht., A. ((2002).). Computational Intelligence. John Wiley & Sons Ltd.
Fleming, C., & Fonseca, P. (1993). Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. Proceedings of the Fifth International Conference on Genetic Algorithms, (pp. 416–42).
Ghosh, A. (2004). Evolutionary Algorithms for Multi-Criterion Optimization: A Survey. International Journal of Computing & Information Sciences, 2 (1), pp. 38-57.
Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer Academic Publishers.
Hassanzadeh, H. (2010). A Multi-objective Gravitational Search Algorithm. Computational Intelligence, Communication Systems and Networks (CICSyN), Second International Conference on, (pp. pages 7-12).
Hassanzadeha, R., Mahdavib, I., & Mahdavi-Amiric, N. (2014). Ant Colony Optimization for Multi-objective Digital Convergent. Journal of Optimization in Industrial Engineering, Volume 7, Issue 16, Page 1-19.
Hu, W., & Yen, G. (2013). Adaptive Multiobjective Particle Swarm Optimization Based on Parallel Cell Coordinate System. IEEE Transactions on Evolutionary Comutation.
Kahejvand, V., Hossein, P., & Zandieh, M. (2014). Multi-objective and Scalable Heuristic Algorithm for Workflow Task Scheduling in Utility Grids. Journal of Optimization in Industrial Engineering, Volume 7, Issue 14, Page 27-36.
karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical report, . Erciyes University.
Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks.
Knowles, J., & Corne, D. (1999). The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization. in Proceedings of the 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, (pp. pp. 98–105).
Luila, E. P. (2008). Problema da Mochila Multi-critério, Aspectos Algorítmicos e Implementação Informática. . Tese de Mestrado, Instituto Superior Técnico, Universidade Técnica de Lisboa.
Madavan, N. (2003). Multi-objective optimization using a Pareto differential evolution approach. Proceeding of the Congress on Evolutionary Computation”, Vol.2, (pp. pp.862-869).
Mehdizadeh, E., & Kivi, F. (2014). Three Metaheuristic Algorithms for Solving the Multi-item Capacitated Lot-sizing Problem with Product Returns and Remanufacturing. Journal of optimization in industrial engineering, Volume 7, Issue 16, Page 41-53.
Mirzazadeh, M., Shirdel, G., & Masoumi, B. (2011). A Honey Bee Algorithm To Solve Quadratic Assignment Problem. Journal of optimization in industrial engineering, Volume 4, Issue 9, Page 27-36 .
Naderi, B., & Sadeghi, H. (2012). A Multi-objective simulated annealing algorithm to solving flexible no-wait flowshop scheduling problems with transportation times. Journal of Optimization in Industrial Engineering, Volume 5, Issue 11, Page 33-41.
Orouskhani, M., Mansouri, M., & Teshnehlab, M. (2011). Average- Inertia weighted Cat swarm optimization. LNCS, Berlin Heidelberg: Springer-Verlag, (pp. pp 321– 328).
Orouskhani, M., Mansouri, M., Orouskhani, Y., & Teshnehlab, M. (2013). A hybrid method of modified cat swarm optimizationand gradient descent algorithm for training anfis. International Journal of Computational Intelligence and Applications Volume 12, Issue 02,.
Panda, G., Pradhana, P., & Majhib, B. (2011). IIR system identification using cat swarm optimization. Expert Systems with Applications, Volume 38, Issue 10, Pages 12671–12683.
Pradhan, P., & Panda, G. (2012). Solving multiobjective problems using cat swarm optimization. Expert Systems with Applications, Volume 39, Issue 3, Pages 2956–2964.
Qian, W., & Li, A. (2008). Adaptive differential evolution algorithm for multiobjective optimization problems. Applied Mathematics and Computation 201, 431–440.
Rahmanian, R., Ghaderi, A., & Mehrabad.M. (2012). A Simulated Annealing Algorithm within the Variable Neighbourhood Search Framework to Solve the Capacitated Facility Location-Allocation. Journal of Optimization in Industrial Engineering, Volume 5, Issue 10, Page 45-54.
Robic, T., & Filipi, B. (2005). DEMO: Differential Evolution for Multiobjective Optimization. LNCS 3410, (pp. pp. 520–533).
Santosa, B., & Ningrum, M. (2009). Cat Swarm Optimization for Clustering . International Conference of Soft Computing and Pattern Recognition, (pp. pp 54-59).
Scheffer, M. (1985). Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. Proceedings of the 1st International Conference on Genetic Algorithms.
Schott, J. R. (1995). Fault tolerant design using single and multi-criteria genetic algorithms. Master’s thesis.
Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. Proceedings of IEEE International Conference on Evolutionary Computation, (pp. pp. 69–7).
Storn, R., & Price, K. (1997). Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359.
Tizhoosh, H. (2005). Opposition-Based Learning. Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation.
Tripathi, P., Bandyopadhyay, S., & Pal, S. (2007). Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients. Information sciences 177, 5033-5049.
Veldhuizen, D. V. (1999). Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations, PhD thesis.
Weise, T. (2009). Global Optimization Algorithms, Theory and applications.
Xue, F., & Sanderson, A. (2003). Pareto-based multi-objective differential evolution. Proceedings of the 2003 Congress on Evolutionary Computation, (pp. pp.420-431).
Yongguo, L., Xindong, W., & Yidong, S. (2012). Cat swarm optimization clustering (KSACSOC): A cat swarm optimization clustering algorithm . Scientific Research and Essays Vol. 7(49), pp. 4176-4185.
Zadeh, L. (1963). Optimality and Non-Scalar-Valued Performance Criteria. IEEE Trans Autom Control 8, 59–60.
Zhang, Q., & Li, H. (2007). MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput., Vol. 11, no. 6, pp. 712-731.
Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications. Doctoral dissertation ETH 13398, Swiss Federal Institute of Technology (ETH).
Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: improving the strength pareto evolutionary algorithm. Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, Technical report TIK- report 103.