A Hybrid Geospatial Data Clustering Method for Hotspot Analysis
Subject Areas : Journal of Computer & RoboticsMohammad Reza Keyvanpour 1 , Mostafa Javideh 2 , Mohammad Reza Ebrahimi 3
1 - Department of Computer Engineering, Alzahra University, Tehran, Iran
2 - Shamsipoor Technical College, Tehran, Iran
3 - Islamic Azad University, Qazvin Branch, Qazvin, Iran
Keywords:
Abstract :
[1] H. J. Miller and J. Han, Geographic data mining and knowledge discovery: An overview, In H. J. Miller and J. Han (Eds.) Geographic Data Mining and Knowledge Discovery, London: Taylor and Francis, pp. 3-32, 2001. [2] H. J. Miller, Geographic data mining and knowledge discovery, In J. P. Wilson and A. S. Fotheringham (Eds.) Handbook of Geographic Information Science, ISBN: 978-1-4051-0795-2, article No 19, 2007. [3] D. Guo, Multivariate spatial clustering and geovisualization. In Geographic Data Mining and Knowledge Discovery, In H. J. Miller and J. Han (Eds.). London and New York: Taylor & Francis, pp. 325-345, 2009. [4] J. Han, M. Kamber and A.K.H. Tung. Spatial clustering methods in data mining: A survey, In: Geographic Data Mining and Knowledge Discovery. H.J. Miller and J. Han, (eds.), London: Taylor & Francis, pp. 33–50, 2001. [5] J. Han, K. Koperski and N. Stefanovic, GeoMiner: A system prototype for spatial data mining, ACM SIGMOD International Conference on Management of Data, Tucson, AZ, pp. 553–556, 1997. [6] S. Shekhar, C.T. Lu and P. Zhang, A unified approach to detecting spatial outliers, GeoInformatica, 7, pp. 139–166, 2003. [7] H. Chen, W. Chung, J.J. Xu., G. Wang, Y.Qin and M. Chau, Crime data mining: A general framework and some examples, University of Arizona; published by IEEE Computer Society Press Los Alamitos, CA, USA, 2004. [8] H. Chen, W. Chung, Y.Qin, M.Chau, J.J.Xu, G.Wang, R. Zheng and H. Atabakhsh, Crime data mining: An overview and case studies, 2003. [9] H. Chen, H. Atabakhsh, T. Petersen, J. Schroeder, T. Buetow, L. Chaboya, C.O’Toole, M.Chau, T.Cushna, D. Casey and Z. Huang, COPLINK: Visualization for crime analysis, Proc. of The National Conf. on Digital Government Research, 2003. [10] Y. Xiang, M. Chau, H. Atabakhsh and H.Chen, Visualizing criminal relationships: Comparison of a hyperbolic tree and a hierarchical list, University of Arizona, 2004. [11] P. Thongtae and S. Srisuk, An analysis of data mining applications in crime domain, citworkshops, pp. 122-126, IEEE 8th International Conf. on Computer and Information Technology Workshops, 2008. [12] A.Gonzales, R.Schofield, and S.Hart, Mapping crime: Understanding hotspot. U.S. Department of Justice, 2005. [13] M. Ahmadi, A Sharifi and M.J. Valadan, Crime mapping and spatial analysis, International institute for geo-information science and earth observation, Enschede, Neatherlands, 2003. [14] V.Estivill-Castro and I. Lee, Data mining techniques for autonomous exploration of large volumes of geo-referenced crime data, 6th Int. Conf. on Geocomputation, Brisbane, Australia, 2008.
[15] M.Wyland, Design and Implementation of a spatial Data Engine and Visualization Interface for a Crime Information System, 2008.
[16] L.Kelvin, C.Stephen, N.Vincent and S.Simon, Introduction of STEM: Space-Time-Event Model for crime pattern analysis. Asian journal of information technology, 2008. [17] M.A.Santos da Silva, A.M. Vieira Monteiro and J.S. Medeiros, Visualization of Geospatial data by component plane and U-Matrix, Brazil, 2008.
[18] L.Kelvin, J.Li, C. Stephen and N.Vincent, An Application of the dynamic pattern analysis framework to the analysis of spatial-temporal crime relationships, Journal of Universal Computer Science, vol. 15, no. 9, 2009. [19] R.W.Adderley, The use of data mining techniques in crime trend analysis and offender, profiling, PhD thesis, Publisher: University of Wolverhampton, 2007. [20] N. Levin, The CrimeStat Program: Characteristics, Use, and Audience, Houston, TX, 2004 [21] P. Mohan, S. Shekhar, N. Levine, R. Wilson, B. George and M.Celik, Should SDBMS support a join index?: A case study from crime stat, USA(c) 2008 ACM, ISBN:978-1-60558-323-5, 2008. [22] A. Helmstetter and D. Sornette, Subcritical and supercritical regimes in epidemic models of earthquake aftershocks, J. Geophys. Res., 107(B10), 2237, DOI:10.1029/2001JB001580, 2002. [23] Y.Y. Kagan and L.Knopoff, Statistical short-term earthquake prediction, Science 236, pp. 1563–1567, 1987. [24] Y.Ogata, Statistical models for earthquake occurrence and residual analysis for point processes, J. Am. stat. Assoc., 83, pp. 9-27, 1998. [25] W.Dzwinel, D.A.Yuen, K.Boryczko, Y.Ben-Zion, S. Yoshioka and T.Ito, Cluster analysis, data-mining, multi-dimensional visualization of earthquakes over space, time and feature space, Nonlinear Processes in Geophysics. Vol. 12. pp. 117-128, 2005. [26] C.C.Chen, J. B.Rundle, J. R.Holliday, K. Z.Nanjo, D. L.Turcotte, S.C. Li and K. F.Tiampo, The 1999 Chi-Chi, Taiwan, earthquake as a typical example of seismic activation and quiescence, Geophys. Res. Lett., 32, L22315, DOI:10.1029/ 2005GL023991, 2005. [27] R.Muir-Wood, Earthquake clustering due to stress interactions, proceedings of the 2008 science symposium: Advances in Earthquake Forcasting, RMS Special Report 2008, Risk Management Solutions,Inc, 2008.
Journal of Computer and Robotics 1 (2010) 53-67
67
[28] M.R.Keyvanpour, M.Javideh, M.R. Ebrahimi, and M.Sojoodi, Using Geographical information systems for crime prevention, Proceedings of National Conf. on Crime Prevention, Iran, 2008. [29] G.C.Oatley, B.W.Ewart and J.Zeleznikow, Decision support systems for police: lessons from the application of data mining techniques to 'Soft' forensic evidence, Journal of Artificial Intelligence and Law, Vol. 14, No. 1-2, DOI: 10.1007/s10506-006-9023-z, 2006. [30] http://www.crimereduction.homeoffice.gov.uk. [31] J.Reno, D.Marcus, L.Robinson, N.Brennan, and J.Travis, Mapping crime principle and practice, U.S. Department of Justice, 1999.
[32] J.Han, and M.Kamber, Data mining concepts and techniques, second edition, Morgan Kaufmann, November 3, 2005.
[33] G.K. Gupta, Introduction to data mining with case studies, prentice-hall of India, New Delhi, 2006.
[34] X.W. Syrmos, Optimal cluster selection based on Fisher class separability measure, American Control Conference, IEEE, 2005.
[35] http://www.geophysics.ut.ac.ir.
[36] B.Raskutti and C.Leckie, An evaluation of criteria for measuring the quality of clusters, pp. 905 – 910, ISBN:1-55860-613-0, Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1999.