A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
Subject Areas : Journal of Computer & RoboticsZahra Malmir 1 , Mohammad Hossein Rezvani 2
1 - Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 - Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Keywords:
Abstract :
[1] Malik, N.; Kumar, P., "Distributed Data Mining in Wireless Sensor Network Using Fuzzy Naïve Byes." International Journal of Engineering and Computer Science, vol. 6, no. 8, pp. 22327-22332 (2017).
[2] Guo, X.; Wang, D.; Chen, F., "An Anomaly Detection Based on Data Fusion Algorithm in Wireless Sensor Networks." International Journal of Distributed Sensor Networks, pp. 1-10 (2015).
[3] Tripathi, R.; Dwivedi, S. K., "A Quick Review of Data Stream Mining Algorithms." Imperial Journal of Interdisciplinary Research,vol. 2. No. 7, pp. 870-873 (2016).
[4] Ahmed, M.; Mahmood, A. N.; Hu, J., "A Survey of Network Anomaly Detection Techniques." Journal of Network and Computer Applications, vol. 60, pp. 19–31 (2016).
[5] Thuc, K.-X.; Insoo, K., "A Collaborative Event Detection Scheme Using Fuzzy Logic in Clustered Wireless Sensor Networks." AEUInternational Journal of Electronics and Communications, vol. 65,no. 5, pp. 485–488 (2011).
[6] Islam, R.; Shahadat Hossain, M.; Andersson, K., "A Novel Anomaly Detection Algorithm for Sensor Data under Uncertainty." Soft Computing, vol. 22, no.5, pp. 1623-1639 (2018).
[7] Gil, P.; Martins, H.; Januário, F., "Outliers Detection Methods in Wireless Sensor Networks." Artificial Intelligence Review,Springer, pp. 1-26 (2018).
[8] Zhang, Y.; Meratnia, N.; Havinga, P. J.M., "Distributed Online Outlier Detection in Wireless Sensor Networks Using Ellipsoidal Support Vector Machine." Ad Hoc Networks, vol. 11, no.3, pp.1062–1074 (2013).
[9] Knorr, E.; Ng, R.T., "Algorithms for Mining Distance-based Outliers in Large Data Sets." VLDB 1998. In: Proceedings of the 24th International Conference on Very Large Databases pp. 392-403.New York City, USA (1998).
[10] Araya, D. B.; Grolinger, K.; ElYamany, H. F.; Capretz, M. A.;Bitsuamlak, G., "An Ensemble Learning Framework for Anomaly Detection in Building Energy Consumption." Energy and Buildings,vol. 144, pp. 191-206 (2017).
[11] Zhang, J.; Gardner, R.; Vukotic, I., "Anomaly Detection in Wide Area Network Meshes Using Two Machine Learning Algorithms."Future Generation Computer Systems, in press, accepted manuscript, (2018).
[12] Zhou, Z.-H., Ensemble learning. Encyclopedia of Biometrics,Springer, Berlin, Germany, pp. 270–273 (2009).
[13] Ayadi, A.; Ghorbel, O.; Obeid, A. M.; Abid, M., "Outlier Detection Approaches for Wireless Sensor Networks: A Survey." Computer Networks, vol. 129, no. 1, pp. 319-333 (2017).
[14] Agrawal, S.; Agrawal, J., "Survey on Anomaly Detection Using Data Mining Techniques." Procedia Computer Science, vol. 60, pp.
708-713 (2015).
[15] Ghorbel, O.; Abid, M.; Snoussi, H., "Improved KPCA for Outlier Detection in Wireless Sensor Networks." ATSIP 2014, 1st International Conference on Advanced Technologies for Signal and Image Processing. Sousse, Tunisia, IEEE, pp. 507–511 (2014).
[16] Asmuss, J.; Lauks, G., "Network Traffic Classification for Anomaly Detection Fuzzy Clustering-based Approach." FSKD 2015. 12th International Conference on Fuzzy Systems and Knowledge Discovery, Zhangjiajie, China. IEEE, pp. 313-318 (2017).
[17] Dromard, J.; Roudière, G.; Owezarski, P., "Online and Scalable Unsupervised Network Anomaly Detection Method." IEEE Transactions on Network and Service Management, vol. 14, no. 1,
pp. 34-47 (2017).
[18] Tan, P.N.; Steinbach, M.; Kumar, V., "Introduction to Data Mining." Addison-Wesley (2005).
[19] Bhargava, A.; Raghuvanshi, A., "Anomaly Detection in Wireless Sensor Network Using S-Transform in Combination with SVM."IEEE International Conference on Computational Intelligence and Communication Networks. Mathura, India, IEEE, pp. 111-116 (2013).
[20] Araya, D. B.; Grolinger, K.; ElYamany, H. F.; Capretz, M. A.;Bitsuamlak, G., "Collective Contextual Anomaly Detection Framework for Smart Buildings." IJCNN 2016. IEEE International
Joint Conference on Neural Networks. Vancouver, BC, Canada,IEEE, pp. 511–518 (2016).
[21] Ahmad, S.; Lavin, A.; Purdy, S.; Agha, Z., "Unsupervised Real-Time Anomaly Detection for Streaming Data." Neurocomputing,vol. 262, pp. 134-147 (2017).
[22] Padilla, D.E.; Brinkworth, R.; McDonnell, M.D., "Performance of a Hierarchical Temporal Memory Network in Noisy Sequence Learning." CYBERNETICSCOM 2013. Proceedings of the IEEE International Conference on Computational Intelligence and Cybernetics. Yogyakarta, Indonesia, IEEE, pp. 45-51 (2013).
[23] Dominguesa, R.; Filipponea, M.; Michiardia, P.; Zouaoui, J., "A Comparative Evaluation of Outlier Detection Algorithms:Experiments and Analyses." Pattern Recognition, Elsevier, vol. 74,
pp. 406-421 (2018).
[24] Bosman, H. H.; Iacca, G.; Tejada, A.; Wörtche, H. J.; Liotta, A.,"Spatial Anomaly Detection in Sensor Networks Using Neighborhood Information." Information Fusion, vol. 33, pp. 41-56 (2017).
[25] Intel Lab Data (http://db.csail.mit.edu/labdata/labdata.html).
[26] Chatterjee, S.; Mukhopadhyay, A., "Clustering Ensemble: A Multiobjective Genetic Algorithm Based Approach." Procedia Technology, vol. 10, pp. 443-449 (2013).
[27] Jagannath Nanda, S.; Panda, G., "A Survey on Nature Inspired Metaheuristic Algorithms for Partitional Clustering." Swarm and Evolutionary Computation, vol. 16, pp. 1-18 (2014).
[28] Garcia-Font, V.; Garrigues, C.; RifÖPous, H., "A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor Networks." Sensors, vol. 16, no. 6, 868 (2016).
[29] O'Reilly, C.; Gluhak, A.; Imran, M. A.; Rajasegarar, S., "Anomaly Detection in Wireless Sensor Networks in A Non-stationary Environment." IEEE Communications Surveys & Tutorials, vol. 16,no. 3, pp. 1413-1432 (2014).
[30] Rajasegarar, S.; Leckie, C.; Palaniswami, M., "Hyperspherical Cluster-based Distributed Anomaly Detection in Wireless Sensor Networks." Journal of Parallel and Distributed Computing, vol. 74,no. 1, pp. 1833-1847 (2014).
[31] Kumarage, H.; Khalil, I.; Tari, Z.; Zomaya, A., "Distributed Anomaly Detection for Industrial Wireless Sensor Networks Based on Fuzzy Data Modelling." Journal of Parallel and Distributed Computing, vol. 73, no. 6, pp. 790-806 (2013).
[32] Kapoor, A.; Singhal, A., "A comparative study of K-Means, KMeans++ and Fuzzy C-Means clustering algorithms." CICT 2017.3rd International Conference on Computational Intelligence &
Communication Technology. Ghaziabad, India, IEEE, pp. 1-6 (2017).
[33] Erramilli, A.; Roughan, M.; Veitch, D.; Willinger, W., "Self-Similar Traffic and Network Dynamics." Proceedings of the IEEE, vol. 90,no. 5, pp. 800-819 (2002).
[34] Napoletano, P.; Piccoli, F.; Schettini, R., "Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity." Sensors,vol. 18, no. 1, pp. 1-15 (2018).