Reliability Measurement’s in Depression Detection Using a Data Mining Approach Based on Fuzzy-Genetics
Subject Areas : Journal of Computer & RoboticsMohammad Nadjafi 1 , Sepideh Jenabi 2 , Adel Najafi 3 , Ghasem Kahe 4
1 - Aerospace Research Institute (Ministry of Science, Research and Technology)
2 - Computer engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 - Researcher and Instructure of Computer Science, Tehran, Iran
4 - Aerospace Research Institute (Ministry of Science, Research and Technology), Tehran, P.O.B. 14665-834, Iran
Keywords:
Abstract :
[1] Depression: Overview, http://www.WHO.int/newsroom /factsheets/detail/depression.
[2] Susel G. A & Isabel de la T. & Sofiane H. & Miguel L.-C. & Diego C. B. & Lola M. N. & Manuel F. “Data Mining Algorithms and Techniques in Mental Health: A Systematic Review” Journal of Medical Systems (2018) 42: 161 https://doi.org/10.1007/s10916-018-1018-2
[3] Shahrzad Oveisi, Mohammad Ali Farsi, Mohammad Nadjafi, Ali Moeini “A New Approach to Promote Safety in the Software Life Cycle”, Journal of Computer & Robotics 12 (1), 2019 77-91
[4]Golriz Amooee, Behrouz Minaei-Bidgoli, Malihe Bagheri-Dehnavi, “A Comparison Between Data Mining Prediction Algorithms for Fault Detection (Case study: Ahanpishegan co.)” IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 6, No 3, November 2011 ISSN 1694-0814
[5] McCue, C. Data Mining and Predictive Analytics. Data Mining and Predictive Analysis, 31–48. doi:10.1016/b978-0-12-800229-2.00003-1, 2015.
[6] Larose, Daniel T., and Chantal D. Larose, Discovering knowledge in data: an introduction to data mining. Vol. 4. John Wiley & Sons, 2014.
[7] Susel G. A & Isabel de la T. & Sofiane H. & Miguel L.-C. & Diego C. B. & Lola M. N. & Manuel F. “Data Mining Algorithms and Techniques in Mental Health: A Systematic Review” Journal of Medical Systems (2018) 42: 161 https://doi.org/10.1007/s10916-018-1018-2
[8] Yang, S., Zhou. P., Duan, K., Hossain, M. S., and Alhamid, M. F., "emHealth: Towards emotion health through depression prediction and intelligent health recommender system". Mob. Netw. Appl.; 1-11, 2017.
[9] Jena, L., and Kamila, N. K., "A model for prediction of human depression using Apriori algorithm". 2014 Int. Conf Inf Technol.; 240-244, 2014.
[10] Jung, Y., and Yoon, Y. I., "Multi-level assessment model for wellness service based on human mental stress level". Mu/timed. Tools Appl. 76(9):11305-11317, 2017.
[11] Morales, S., Barros, J., Echavarri, 0., Garcia, F., Osses, A., Moya, C. et al., "Acute mental discomfort associated with suicide behavior in a clinical sample of patients with affective disorders: Ascertaining critical variables using artificial intelligence tools". Front. Psychiatr: 8:7, 2017.
[12] Mohammadi, M., Al-Azab, F., Raahemi, B., Richards, G., Jaworska, N., Smith, D. et al., "Data mining EEG signals in depres sion for their diagnostic value". BMC Med. Inform. Decis. Mak. 15(1):108, 2015.
[13] J. F. Dipnall, J. A. Pasco, M. Berk, L. J. Williams, S. Dodd, F. N. Jacka and e. al, "Fusing data mining, machine learning and tradi tional statistics to detect biomarkers associated with depression," PLoS One, vol. 11(2), pp. 1-23, 2016.
[14] M. Pirooznia, F. Seifuddin, J. Judy, P. Mahon, J. Potash and P. Zandi, "Data mining approaches for genome-wide asscociation of mood disorders," Psychiatr: Genet, vol. 22(2), pp. 55-61, 2012.
[15] H. Ni, X. Yang, C. Fang, Y. Guo, M. Xu and Y. He, "Data mining-based study on sub-mentally healthy state among residents in eight provinces and cities in China," J Tradit. Chinese Med, vol. 34(4), pp. 511-517, 2014.
[16] Sepideh Jenabi, Ghasem Kahe, “A Review of Depression Detection by Data Mining Methods”, 8th National Conference on Computer Science and Engineering and Information Technology, Iran. https://www.civilica.com/Paper-CECCONF08-CECCONF08_031.html
[17] Chang YS, Hung WC, Juang TY. "Depression diagnosis based on ontologies and bayesian networks". Proc - 2013 IEEE Int. Conf. Syst. Man., Cybern. SMC. ;3452-3457, 2013.
[18] Thanathamathee, P., "Boosting with feature selection technique for screening and predicting adolescents’ depression". 2014 4th Int Conf Digit Inf Commun Technol Its Appl DICTAP. ;23-27, 2014.
[19]Ghafoor, Y., Huang, Y. P., and Liu, S. I., "An intelligent approach to discovering common symptoms among depressed patients". Soft. Comput. 19(4):819-827, 2015.
[20]Hou, Y., Xu, J., Huang, Y, and Ma, X., "A big data application to predict depression in the university based on the reading habits". 2016 3rd Int. Conf Syst. Inform.,! CSA! ;1085-1089, 2016.
[21] Husain, W., Xin, L. K., Rashid, N. A., and Jothi, N., "Predicting generalized anxiety disorder among women using random forest approach". 2016 3rd Int ConfComput Inf Sci. ;37-42, 2016.
[22] Li, X., Hu, B., Sun, S., and Cai, H., "EEG-based mild depressive detection using feature selection methods and classifiers". Comput. Methods Programs Biomed. 136:151-161, 2016.
[23] Nie, Z., Gong, P., and Ye, J., "Predict risk ofrelapse for patients with multiple stages of treatment of depression". Proc. 22Nd ACM SIGKDD Int. Conf Knowl. Discov. Data Min.; 1795-1804, 2016.
[24] Spyrou, I. M., Frantzidis, C., Bratsas, C., Antoniou, I., and Bamidis, P. D., "Geriatric depression symptoms coexisting with cognitive decline: A comparison of classification methodologies". Bio med. Sign. Process Contrl. 25:118-129, 2016.
[25] Kim, J. Y., Liu, N., Tan, H. X., and Chu, C.H., "Unobtrusive mon itoring to detect depression for elderly with chronic illnesses". IEEE Sens. J 17(17):5694- 5704, 2017.
[26] Hadzic, M., Hadzic, F., and Dillon, T. S., Mining of patient data: "Towards better treatment strategies for depression". Int. J Funct. Inform. Personal. Med. 3(2):122-143, 2010.
[27] Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley.
[28] Ranno Agarwal “Genetic Algorithm in Data Mining”, International Journal of Advanced Research in Computer Science and Software Engineering, Volume 5, Issue 9, September 2015
[29] Ghassan A.; Clay G.; Naser E.; Su Y.; Rajasree H. N.; Israa A. “Intelligent data mining and machine learning for mental health diagnosis using genetic algorithm” 2015 IEEE International Conference on Electro/Information Technology (EIT). DOI: 10.1109/EIT.2015.7293425
[30] Subhagata C. “A neuro-fuzzy approach for the diagnosis of depression” https://doi.org/10.1016/j.aci.2014.01.001
[31] K.S.Chandrasekaran, V.Mahalakshmi , M R Anantha Padmanaban ,”Measuring Performance Reliability of a system using Data Mining” , 2019 11th International Conference on Advanced Computing (ICoAC) 978-1-7281-5286-8/IEEE 10.1109/ICoAC48765.2019.246834, ©2020
[32] Mansah, “A Tour of Evaluation Metrics for Machine Learning”, https://www.analyticsvidhya.com/blog /2020 / 11/a-tour-of-evaluation-metrics-for-machine-learning/#, November 24, 2020.
[33] M. Finkelstein, “Failure Rate Modeling for Reliability and Risk” Springer Science & Business Media, 2008 M11 7
[34] Sepideh Jenabi, Ghasem Kahe, “A Review of Depression Detection by Data Mining Methods”, 8th National Conference on Computer Science and Engineering and Information Technology, Iran. https://www.civilica.com/Paper-CECCONF08-CECCONF08_031.html