Mathematical Modeling of Cancer Cells and Chemotherapy Protocol Dealing Optimization Using Fuzzy Differential Equations And Lypunov Stability Criterion
Subject Areas : journal of Artificial Intelligence in Electrical Engineering
1 -
Keywords:
Abstract :
[1] Eisen, M.M,(1979). Mathematical Models in Cell Biology and Cancer Chemotherapy. Volume 30 of Lecture Notes in Biomathematics, Springer-Verlag, New York.
[2] Knolle, H. (1988). Cell Kinetic Modeling and the Chemotherapy of Cancer”, Volume 75 of Lecture Notes in Biomathematics, SpringerVerlag, New York.
[3] Swierniak A., Kimmel M., Smieja J. (2009). Mathematical modeling as a tool for planning anticancer therapy. European Journal of Pharmacology 625, 108–121.
[4] Kimmel, M. and Swierniak, A.(2006).Using control theory to make cancer chemotherapy beneficial from phase dependence and resistant to drug resistance”, J. Math. Biosci.
[5] Ghaffari A., Karimi M. (2009).Optimal Design of Chemotherapy Drug Protocol for Cancer Treatment Based on a New Mathematical Model” Int. J. Modeling, Identification and Control.
[6] Ghaffari A., Nasserifar N. (2009). Mathematical Modeling and Lyapunov based Drug Administration in Cancer Chemotherapy. Iranian Journal of Electronical and Electrical Engineering.
[7] Webb, G.F.(1992). A cell population model of periodic chemotherapy Treatment. In Biomedical Modeling and Simulation, Elsevier Science, .92-83
[8] Kheifetz, Y., Kogan, Y., Agur, Z.,“Long-range predictability in models of cell populations subjected to phase-specific drugs: Growth rate approximation using properties of positive compact operators,” Mathematical Models & Methods in the Applied Sciences. In Press.
[9] Birkhead, B.G., Rakin, E.M., Gallivan, S., Dones, L. and Rubens R.D. (1987). A mathematical model of the development of drug resistance to cancer chemotherapy”, J. Cancer.Clin.Oncol.23(9), 1421-1427.
[10] Swan, G.W. (1987). Tumor growth models and cancer chemotherapy”, In Cancer Modeling, Volume 83, Chapter 3, (Edited by J.R. Thompson and B. Brown), Marcel Dekker, New York, 91-179.
[11] Kirschner, D., Panetta, J. (1998). Modeling immunotherapy of the tumor immune interaction. J. Math. Biol. 37, 235-252.
[12] Villasana, M. (2001). A delay differential equation model for tumor Growth. PhD thesis, Mathematical Department, Claremont University,CA, USA.
[13] Kozusko, F. et al. (2001). A mathematical model of invitro cancer cell growth and treatment with the antimitoic agent curacin A,” Math.Biosci.170, 1-16.
[14] T. Burden, J. Ernstberger and K. Renee Fister (2004). Optimal control applied to immunotherapy”, Discrete and continuous dynamical systems-series B Vol 4.
[15] K.R. Fister and J.H. Donnelly (2005). Immunotherapy: an optimal control theory approach. Mathematical Bioscience and engineering Vol 2.
[16] Liu, W., Hillen, T., Freedman, H., I. (2007). A Mathematical Model for M-PHASE Specific Chemotherapy Including the G0-PHASE and Immune response, J. of MATHEMATICAL BIOSCIENCES AND ENGINEERING Volume 4, Number 2. [17] Mackey, M.C. (2001). Cell kinetic status of hematopoietic stem cells. Cell Prolif., 34, 71-83. [18] Kuznetsov, A., et al. (1994). Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis”, B. Math. Biol,. .321-295 ,56 [19] Jankovic, M. (1999). Control LyapunovRazumikhin functions for time delay systems. Proceedings of CDC, Phoenix, AZ. [20] Jankovic, M. (2000). Extention of control lyapunov functions to time delay systems. Proceedings of the 39’ IEEE Conference on Decision and Control, Sydney, Australia. [21] Slotine, J.J.E., Li, W.(1991). Applied Nonlinear Control, Prentice Hall International, Englewood Cliffs pp. 58-65. [22] Nikdel, Parisa, et al. "Improved Takagi–Sugeno fuzzy model-based control of flexible joint robot via Hybrid-Taguchi genetic algorithm." Engineering Applications of Artificial Intelligence 33 (2014): 12-20. [23] Pourmahmood, Mohammad, Mohammd Esmaeel Akbari, and Amin Mohammadpour. "An efficient modified shuffled frog leaping optimization algorithm." Int. J. Comput. Appl 32.1 (2011): 0975-8887.