Subject Areas : Research On Surface Engineering and Nanomaterials Science
1 - گروه فیزیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.
Keywords:
Abstract :
[1] A.B. Dos Santos, F.J. Cervantes, J.B. van Lier, Review paper on current technologiesfor decolourisation of textile wastewaters: perspectives for anaerobic biotechnology, Bioresource technology. 98 (2007) 2369-2385.
[2] R.V. Gonçalves, H. Wender, S. Khan, M.A. Melo, Photocatalytic Water Splitting by Suspended Semiconductor Particles, Nanoenergy. (2018) 107-140.
[3] T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J.P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light , The Journal of Physical Chemistry C. 115 (2011) 5657–5666.
[4] T.S. Dabodiya, P. Selvarasu, A.V. Murugan, Tetragonal to Monoclinic Crystalline Phases Change of BiVO4 via Microwave-Hydrothermal Reaction: In Correlation with Visible Light-Driven Photocatalytic Performance, Inorganic Chemistry. 58 (2019) 5096-5110.
[5] P. Pookmanee, S. Kojinok, S. Phanichphant, Bismuth Vanadate (BiVO4) Powder Prepared by the Sol-gel Method, Journal of Metals, Materials and Minerals. 22 (2012) 49-53.
[6] A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications, Applied Catalysis A. 555 (2018) 47-74.
[7] W. Wang, Y. Yu, T. An, G. Li, H.Y. Yip, J.C. Yu, P.K. Wong, Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: Bactericidal performance and mechanism, Environmental Science & Technology. 46 (2012) 4599–4606.
[8] L.R. Hou, C.Z. Yuan, Facile fabrication of taper-like BiVO4 nanorods with high photocatalytic property under sunlight irradiation, Advanced Materials Research. 96 (2010) 87–92.
[9] R. Huo, X.L. Yang, Y.Q. Liu, Y.H. Xu , Visible-light photocatalytic degradation of glyphosate over BiVO4 prepared by different co-precipitation methods, Materials Research Bulletin. 88(2017) 56-61.
[10] X. Liu, J.K. Li, Effect of pH on the Properties of BiVO4 by Hydrothermal Synthesis Method, Solid State Phenomena. 281 (2018) 813-818.
[11] J.P. Deebasree, V. Maheskumar, B. Vidhya, Investigation of the visible light photocatalytic activity of BiVO4 prepared by sol gel method assisted by ultrasonication, Ultrasonics Sonochemistry. 45 (2018) 123-132.
[12] G.P. Nagabhushana, G. Nagaraju, G.T. Chandrappa, Synthesis of bismuth vanadate: its application in H2 evolution and sunlight-driven photodegradation, Journal of Materials Chemistry A. 2 (2013) 388-394.
[13] D. Ke, T. Peng, L. Ma, P. Cai, and K. Dai, Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light, Inorganic Chemistry. 48 (2009) 4685–4691.
[14] A.S. Manjunatha , N.S. Pavithra , S. Marappa , S.A. Prashanth , G. Nagaraju , Green Synthesis of Flower‐Like BiVO4 Nanoparticles by Solution Combustion Method Using Lemon (Citrus Limon) Juice as a Fuel: Photocatalytic and Electrochemical Study, Chemistry Select. 3 (2018) 13456-13463.
[15] Q. Chen, M. Zhou, D. Ma, D. Jing, Effect of preparation parameters on photoactivity of BiVO4 by hydrothermal method, Journal of Nanomaterials. 2012 (2012) 1-6.
[16] H. Li, G. Liu, X. Duan, Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties, Materials Chemistry and Physics. 115(2009) 9–13.
[17] E.C. Severo, G.L. Dotto, A.M. Cruz, E.L. Cuellar, E.L. Foletto , Enhanced photocatalytic activity of BiVO4 powders synthesized in presence of EDTA for the decolorization of rhodamine B from aqueous solution, Environmental Science and Pollution Research. 25 (2018) 34123-34130.
[18] R. Ran, J.G. McEvoy, Z. Zhang, Synthesis and Optimization of Visible Light Active BiVO4 Photocatalysts for the Degradation of RhB, Research Article. 2015 (2015) 1-14.
[19] F. Dong, Q. Wu, J. Ma, Y. Chen, Mild oxide-hydrothermal synthesis of different aspect ratios of monoclinic BiVO4 nanorods tuned by temperature, physica status solidi (a). 206 (2009) 59-63.
[20] K. Pingmuang, J. Chen, W. Kangwansupamonkon, G. G. Wallace, S. Phanichphant , A. Nattestad Composite Photocatalysts Containing BiVO4 for Degradation of Cationic Dyes, Scientific reports. 7 (2017) 8929.
[21] B. Rahimi, A. Ebrahimi, N. Mansouri, N. Hosseini, Photodegradaton process for the removal of acid orange 10 using ttanium dioxide and bismuth vanadate from aqueous solution, Global Journal of Environmental Science and Management. 5 (2019) 43-60.
[22] S. Aghakhaninejad, R. Rahimi, S. Zargari, Application of BiVO4 Nanocomposite for Photodegradation of Methyl Orange, Proceedings. 9 (2019) 1-6.
[23] C.N. Van, W.S. Chang, J.W. Chen, K.A Tsai, W.Y.Tzeng, Y.C. Lin, H.H. Kuo, H.J. Liu, K.D. Chang, W.C. Chou, C.L.Wu, Y.C. Chen, C.W. Luo, Y.J. Hsu, Y.H. Chu, Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement, NanoEnergy. 15 (2015) 625-633.
[24] B. Appavu, S. Thiripuranthagan, S. Ranganathan, E. Erusappan, K. Kannan, BiVO4 /N-rGO nano composites as highly efficient visible active photocatalyst for the degradation of dyes and antibiotics in eco system, Ecotoxicology and Environmental Safety. 151 (2018) 118-126. [25] Q. Zeng, J. Li, L. Li, J. Bai, L. Xia, B. Zhou, Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation, Applied Catalysis B: Environmental. 217 (2017) 21-29.
[26] N. Ghazkoob, M. Zargar Shoushtari, I. Kazeminezhad, S. M. Lari Baghal, Synthesis of BiVO4 nanoparticles by the co-precipitation method and study the crystal structure, optical and photocatalytic properties of them, Iran. J. Crystallogr. Mineral. (IJCM). 28 (2020) 797-806.
[27] H. Lade, S. Govindwar, D. Paul, Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor, Environmental Research and Public Health. 12 (2015) 6894-6918.
[28] M. Wang, X. Xi, C. Gong, X.L. Zhang, G Fan, Open porous BiVO4 nanomaterials: Electronspinning fabrication and enhanced visible light photocatalytic activity, Materials Research Bulletin. 74 (2016) 258-264.
[29] P. Brack, J.S. Sagu, T.A.N. Peiris, A. McInnes, M. Senili, K.G.U. Wijayantha, F. Marken, E. Selli, Aerosol-Assisted CVD of Bismuth Vanadate Thin Films and Their Photoelectrochemical Properties, Chemical Vapor Deposition. 21 (2015) 41-45.
[30] Y. Ma, H. Jiang, X. Zhang, J. Xing, Y. Guan, Synthesis of hierarchical m-BiVO4 particles via hydro-solvothermal method and their photocatalytic properties, Ceramics International. 40 (2014) 16485-16493.
[31] V.H. Nguyen, Q.T.P. Bui, D.V.N. Vo, K.T. Lim , L.G. Bach, S.T. Do, T.V. Nguyen, V.D. Doan, T.D. Nguyen, T.D. Nguyen, Effective Photocatalytic Activity of Sulfate-Modified BiVO4 for the Decomposition of Methylene Blue Under LED Visible Light, Materials. 12 (2019) 1-19.
[32] A.N. Kadam, T.G. Kim, D.S. Shin, K.M. Garadkar, J. Park, Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity, Journal of Alloys and Compounds. 710 (2017) 102-113.
[33] H.E.A. Mohamed, B.T. Sone, S. Khamlich, E. Coetsee-Hugo, H.C. Swart, T. Thema, R. Sbiaa, M.S. Dhlamini, Biosynthesis of BiVO4 nanorods using Callistemon viminalis extracts: Photocatalytic degradation of methylene blue, Materials Today: Proceedings. 36 (2021) 328-335.
[34] S. Liu, H. Zhou, G. Dai, W. Wang, Photocatalytic perfermance of sandwich-like BiVO4 sheets by microwave assisted synthesis, Applied Surface Science. 391(2017) 542-547.