Subject Areas : Research On Surface Engineering and Nanomaterials Science
پژمان مولائی 1 , فرشته رحیمی مقدم 2
1 - گروه پژوهشی مستقل نانوفناوری، گروه فیزیک، واحد مسجدسلیمان، دانشگاه آزاد اسلامی، مسجدسلیمان ، ایران
2 - گروه پژوهشی مستقل نانوفناوری، گروه فیزیک، واحد مسجدسلیمان، دانشگاه آزاد اسلامی، مسجدسلیمان ، ایران
Keywords:
Abstract :
[1] C. Xu, P. Ravi Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Nanostructured materials for photocatalysis, Chem Soc Rev. 48 (2019) 3868-3902.
[2] D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao, R. Zong, Y. Zhu, Influence of Defects on the Photocatalytic Activity of ZnO, The Journal of Physical Chemistry C ,118 (2014) 15300-15307.
[3] S. Adhikari, R. Gupta, A. Surin, T.S. Kumar, S. Chakraborty, D. Sarkar, G. Madras, Visible light assisted improved photocatalytic activity of combustion synthesized spongy-ZnO towards dye degradation and bacterial inactivation, RSC Advances , 6 (2016) 80086-80098.
[4] J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, A Facile One‐Step Synthesis of Fe‐Doped g‐C3N4 Nanosheets and Their Improved Visible‐Light Photocatalytic Performance, Chem Cat Chem, 9 (2017) 1708-1715.
[5] X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization, Langmuir 29 (2013) 3097-3105.
[6] N.A.M. Asib, A.N. Afaah, A. Aadila, F.S. Husairi, S.A.H. Alrokayan, H.A. Khan, M.H. Mamat, T. Soga, M. Rusop, Z. Khusaimi, Solution growth of highly crystalline and dense-packed ZnO nanorods on a TiO2 seed layer with enhanced absorbance properties, Japanese Journal of Applied Physics 59 (2020) SAAC10.
[7] W. Sangchay, L. Sikong, K. Kooptarnond, Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles, Procedia Engineering, 32 (2012) 590-596.
[8] X. Pan, M.Q. Yang, Y.J. Xu, Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide--a unique 2D macromolecular surfactant, Phys Chem Chem Phys 16 (2014) 5589-5599.
[9] D. Chandra, S. Mridha, D. Basak, A. Bhaumik, Template directed synthesis of mesoporous ZnO having high porosity and enhanced optoelectronic properties, Chem Commun (Camb) 14 (2009) 2384-2386.
[10] S. Biswas, J. Husek, S. Londo, L.R. Baker, Highly Localized Charge Transfer Excitons in Metal Oxide Semiconductors, Nano Lett 18 (2018) 1228-1233.
[11] N. Chauhan, V. Singh, S. Kumar, K. Sirohi, S. Siwatch, Synthesis of nitrogen- and cobalt-doped rod-like mesoporous ZnO nanostructures to study their photocatalytic activity, Journal of Sol-Gel Science and Technology 91 (2019) 567-577.
[12] N. Kumar, H. Mittal, L. Reddy, P. Nair, J.C. Ngila, V. Parashar, Morphogenesis of ZnO nanostructures: role of acetate (COOH−) and nitrate (NO3−) ligand donors from zinc salt precursors in synthesis and morphology dependent photocatalytic properties, RSC Advances 5 (2015) 38801-38809.
[13] M. Tahir, N. Mahmood, J. Zhu, A. Mahmood, F.K. Butt, S. Rizwan, I. Aslam, M. Tanveer, F. Idrees, I. Shakir, C. Cao, Y. Hou, One Dimensional Graphitic Carbon Nitrides as Effective Metal-Free Oxygen Reduction Catalysts, Sci Rep 5 (2015) 12389.
[14] J. Song and S. Lim, Effect of Seed Layer on the Growth of ZnO Nanorods, J. Phys. Chem. C 111 (2007) 596-600.
[15] P. Molaei and F. Rahimi-Moghadam, Optimized synthesis of ZnO nanostructures by egg-white content ratio manipulation for photocatalytic applications, Mater. Res. Express, 6 (2019) 1250h7
[16] B.D. Cullity & S.R. Stock, Elements of X-Ray Diffraction, 3rd Ed., Prentice-Hall Inc., 2001, p 96-102, ISBN 0-201-61091-4.
[17] P. Makuła, M. Pacia, and W. Macyk, How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra, J. Phys. Chem. Lett. 2018, 9, 23, 6814–6817.
[18] S. Pramanik, S. Mondal, A. C. Mandal, S. Mukherjee, S. Das, T. Ghosh, R. Nath, M. Ghosh, P. K. Kuiri, Role of oxygen vacancies on the green photoluminescence of microwave-assisted grown ZnO nanorods, J. Alloys Compd, 849 (2020) 156684.
[19] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, and Y. Dai, Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO, ACS Appl. Mater. Interfaces 4 (2012) 4024−4030.
[20] P. Ghasemipour1, M. Fattahi1, B. Rasekh and F. Yazdian, Developing the Ternary ZnO Doped MoS2 Nanostructures Grafted on CNT and Reduced Graphene Oxide (RGO) for Photocatalytic Degradation of Aniline, Sci. Rep., 10 (2020) 4414.
[21] K. Sahu and A. Kumar Kar, Counterion-Induced Tailoring of Energy Transfer in Hydrothermally Grown Nanostructured ZnO for Photocatalysis, Cryst. Growth Des.21,(2021) 3656−3667.
[22] P Yun-Pei Zhu, Min Li, Ya-Lu Liu, Tie-Zhen Ren, and Zhong-Yong Yuan, Carbon-Doped ZnO Hybridized Homogeneously with Graphitic
Carbon Nitride Nanocomposites for Photocatalysis, J. Phys. Chem. C 118 (2014)10963−10971.