Subject Areas : Research On Surface Engineering and Nanomaterials Science
1 - گروه مهندسی مکانیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - گروه مهندسی مکانیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
Keywords:
Abstract :
[1] SK .Das, SU .Choi, W .Yu, T .Pradeep, Nanofluids: science and technology. John Wiley & Sons, 2007.
[2] H. Masuda, A. Ebata, K. Teramae. "Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles." (1993).
[3] JA. Eastman, SUS. Choi, S. Li, W. Yu, L. J. Thompson ,"Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles." Applied physics letters , 6 (2001) 718-720.
[4] SK. Das, N. Putra, P. Thiesen, W. Roetzel. "Temperature dependence of thermal conductivity enhancement for nanofluids." J. Heat Transfer, 4 (2003) 567-574.
[5] BC. Pak, YI. Cho, "Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles." Experimental Heat Transfer an International Journal , 2 (1998) 151-170.
[6] Y .Xuan, Q. Li, "Investigation on convective heat transfer and flow features of nanofluids." J. Heat transfer, 1 (2003) 151-155.
[7] D. Wen, Y. Ding. "Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions." International journal of heat and mass transfer, 24 (2004) 5181-5188.
[8] SZ .Heris, SG. Etemad, MN. Esfahany, "Experimental investigation of oxide nanofluids laminar flow convective heat transfer." International communications in heat and mass transfer, 4 (2006) 529-535.
[9] Y. Yang, ZG. Zhang, EA. Grulke, WB. Anderson, G. Wu, "Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow." International journal of heat and mass transfer ,6 (2005) 1107-1116.
[10] S. Lee, SUS. Choi, S. Li, JA .Eastman. "Measuring thermal conductivity of fluids containing oxide nanoparticles." (1999).
[11] Eastman, J. A., U. S. Choi, S. Li, L. J. Thompson, and S. Lee. "Enhanced thermal conductivity through the development of nanofluids." Argonne National Lab., IL (United States) (1996).
[12] J. Jeong, C. Li, Y. Kwon, J. Lee, SH. Kim, R. Yun, "Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids." International journal of refrigeration, 8 (2013) 2233-2241.
[13] M .Kole, TK. Dey. "Effect of prolonged ultrasonication on the thermal conductivity of ZnO–ethylene glycol nanofluids." Thermochimica Acta, 535 (2012) 58-65.
[14] GJ. Lee, CK. Kim, MK. Lee, CK. Rhee, S. Kim, C Kim. "Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method." Thermochimica acta, 542 (2012) 24-27.
[15] R. Saleh, N. Putra, SP. Prakoso, WN. Septiadi, "Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids." International Journal of Thermal Sciences ,63 (2013) 125-132.
[16] W,Yu, H .Xie, L. Chen, Y. Li. "Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid." Thermochimica Acta , 1-2 (2009) 92-96.
[17] BG. Lipták. Instrument Engineers' Handbook, Volume One: Process Measurement and Analysis. Vol. 1. CRC press, 2003.
[18] ASTM Committee E-20 on Temperature Measurement. Manual on the use of thermocouples in temperature measurement. Vol. 470. ASTM International, 1981.
[19] SMS. Murshed, KC. Leong, C. Yang. "Enhanced thermal conductivity of TiO2—water based nanofluids." International Journal of thermal sciences , 4 (2005) 367-373.
[20] KS. Suganthi, KS. Rajan. "Temperature induced changes in ZnO–water nanofluid: zeta potential, size distribution and viscosity profiles." International Journal of Heat and Mass Transfer , 25-26 (2012) 7969-7980.
[21] RL. Hamilton, OK. Crosser. "Thermal conductivity of heterogeneous two-component systems." Industrial & Engineering chemistry fundamentals, 3 (1962) 187-191.
[22] W. Yu, SUS. Choi. "The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model." Journal of nanoparticle research, 5 (2003) 167-171.
[23] X. Wang, X. Xu, SUS. Choi. "Thermal conductivity of nanoparticle-fluid mixture." Journal of thermophysics and heat transfer , 4 (1999): 474-480.
[24] V. Gnielinski. "New equations for heat and mass transfer in turbulent pipe and channel flow." International chemical engineering , 2 (1976) 359-367.
[25] TL. Bergman Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
[26] BS. Petukhov . "Heat transfer and friction in turbulent pipe flow with variable physical properties." In Advances in heat transfer, 6 (1970) 503-564..
[27] SEB. Maı̈ga, CT. Nguyen, N. Galanis, G. Roy, "Heat transfer behaviours of nanofluids in a uniformly heated tube." Superlattices and Microstructures , 3-6 (2004) 543-557.