Construction and implementation of a cooling system to increase the efficiency of photovoltaic panels using the half pipe method
Subject Areas : Journal of New Applied and Computational Findings in Mechanical SystemsAli Sharafi 1 , Ebrahim Aghajari 2 , Alireza Tavakoli 3
1 - Department of Electrical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 - Departmant of Electrical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3 - Departmant of Electrical Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
Keywords: efficiency increase, Solar Panel, half pipe method, cooling process,
Abstract :
Cooling panels using the half pipe method is one of the most important methods used to increase the efficiency of solar resources. In this article, a practical project for cooling a solar panel based on the half-pipe method has been carried out with the aim of increasing the efficiency of solar panels. In the proposed design, the half-pipes are installed directly on the bottom surface of the panel, and the available fluid, which is water in this technique, is inside the half-pipes and in direct contact with the panel, and performs the cooling process in a spiral on the surface of the panel. Two panels have been used to compare the performance of a panel equipped with a half pipe and a panel without this system, the panels have dimensions of 150 x 180 and power of 200 watts. Three sensors have been used to measure the temperature of the panels and the environment. The results show that using the half-pipe method can reduce the temperature of the panels by about 10 degrees Celsius. In addition, the results show a 36% increase in solar panel efficiency by using the half-pipe method.
[1] انجوی ارسنجانی، م.، یعقوبی، م.، جعفرپور، خ.، (1393)، ارزیابی پتانسیل انرژی خورشیدی در چند اقلیم آب و هوایی ایران با استفاده از روش شبکه عصبی، اولین کنفرانس و نمایشگاه بین المللی انرژی خورشیدی.
[2] عبدی علمی، الف.، میرعبداله لواسانی، الف.، (1396)، مروری بر روش ها و کارهای انجام شده در زمینه خنک سازی پنل های فتوولتاییک در جهت افزایش راندمان الکتریکی پنل، سومین کنفرانس بین المللی پژوهش در علوم و مهندسی.
[3] Salehi, R., Jahanbakhshi, A., Golzarian,M . R., Khojastehpour, M., (2021), Evaluation of solar panel cooling systems using anodized heat sink equipped with thermoelectric module through the parameters of temperature, power and efficiency. Energy Conversion and Management: X 11, pp 100-102.
[4] Laseinde, O. T., Ramere, M. D., (2021), Efficiency Improvement in polycrystalline solar panel using thermal control water spraying cooling. Procedia Computer Science 180, pp 239-248.
[5] Li, D., King, M., Dooner, M., Guo, S., Wang, J., (2021), Study on the cleaning and cooling of solar photovoltaic panels using compressed airflow. Solar Energy 221, pp 433-444.
[6] Bhakre, S. S., Sawarkar, P. D., Kalamkar, V. R., (2021), Performance evaluation of PV panel surfaces exposed to hydraulic cooling–A review. Solar Energy 224, pp 1193-1209.
[7] Ruoping, Y., Xiaohui, Y., Fuwei, L., Huajun, W., (2020), Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China. Renewable Energy 155, pp 102-110.
[8] Abdel-Khalik, S., (1976). Heat removal factor for a flat-plate solar collector with a serpentine tube. Solar Energy 18(1), pp 59-64.
[9] Maadi, S. R., Kolahan, A., Passandideh-Fard, M., Sardarabadi, M., Moloudi, R., (2017), Characterization of PVT systems equipped with nanofluids-based collector from entropy generation. Energy conversion and management 150, pp 515-531.
[10] عفرپور، س. و صادق زاده، س. م.، (1400)، خنکسازی پنلهای فتوولتاییک، راهبردی برای آینده، هفتمین کنفرانس بین المللی فناوری و مدیریت انرژی، اردبیل.
[11] صدرزاده خراسانی، م.، نصرالله زاده، ب.، نوعی، س. م.، (1395)، شبیهسازی و بهینهسازی خنک کردن یک پنل خورشیدی، کنگره بین المللی نوآوری در مهندسی و توسعه تکنولوژی، تبریز.
[12] Salehi, R., Jahanbakhshi, A., Golzarian, M. R., Khojastehpour, M., (2021), Evaluation of solar panel cooling systems using anodized heat sink equipped with thermoelectric module through the parameters of temperature, power and efficiency, Energy Conversion and Management: X 11, pp 100102.
[13] Han, J., Zhang, X., Yeung, R. W., (2022), Hydrodynamic behavior of a circular floating solar pond with an entrapped two-layer fluid. Physics of Fluids, 34(1), 012114.
[14] Shrivastava, A., Jose, J. P. A., Borole, Y. D., Saravanakumar, R., Sharifpur, M., Harasi, H., Afzal, A. (2022), A study on the effects of forced air-cooling enhancements on a 150 W solar photovoltaic thermal collector for green cities. Sustainable Energy Technologies and Assessments, 49, 101782.
_||_