Crack detection in pressurized pipes using Harris hawk optimization method
Subject Areas : Journal of New Applied and Computational Findings in Mechanical SystemsAfshin Fathi 1 , Hesam Makvandi 2
1 - Department of Engineering, َ Ahvaz Branch, Islamic Azad University, َAhvaz, Iran
2 - Department of Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran
Keywords: Natural Frequencies, Pressurized pipe, Crack, Harris hawk,
Abstract :
Sudden failure in structures is one of the results of the presence of defects in parts, which have led to many economic and human damages. Since the creation and growth of cracks can lead to component failure, many researchers have investigated methods to detect the presence of cracks in the structure. Due to the widespread use of pipes in various industries, inspection of pipes is one of the most important issues in the industry. The purpose of this research is to provide a method for crack detection (investigating crack depth and location) in pressurized pipes using modal analysis and differential quadrature method. For this purpose, first calculating the natural frequencies of the vibrations of the defective pipe, the effect of the characteristics of the crack on the vibrations of the structure is investigated, then using the Harris hawk optimization method, the location and depth of the crack is calculated using the frequencies of the cracked pipe vibrations. Examining the results obtained for cracked pipes under fluid pressure confirms the correctness and accuracy of the presented method for direct and inverse solution.
[1] Lee, D. M., Choi, M.J., and Oh, T. Y., (1996), Transfer matrix modelling for the 3-dimensional vibration analysis of piping system containing fluid flow, KSME Journal, 10, pp 180-189.
[2] Yu, Z., Zhang, L., and Hu ,J., (2017), Cracked modeling and vibration analysis of pipe with a part-through crack, Journal of Vibroengineering, 19(2), pp 930-942.
[3] Yu, Z., Zhang, L., and Hu ,J., (2016), Damage modeling and simulation of vibrating pipe with part-through circumferential crack, Journal of Vibroengineering, 18(4), pp 2176-2185.
[4] Li, M., Chen, X., Chang, X., Qin, Y., and Li, Y., (2022), General analytical solution for vibrations of pipes with arbitrary discontinuities and generalized boundary condition on Pasternak foundation, Mechanical Systems and Signal Processing, 162, pp 107910.
[5] Eslami, G., Maleki, V. A., and Rezaee, M., (2016), Effect of open crack on vibration behavior of a fluid-conveying pipe embedded in a visco-elastic medium, Latin American Journal of Solids and Structures, 13, pp 136-154.
]6] حسین زاده، م.، فرشیدیان فر، ا.، (1391)، ردیابی ترک عرضی در لوله های حاوی سیال تحت فشار داخلی, نشریه پژوهشی مهندسی مکانیک ایران، 14(1)، ص 20 - 39.
]7] رستاقی، م. ، نوری خاجوی طهرانی، م.، (1393) ، تشخیص سایز و موقعیت نسبی ترک در لوله های حاوی سیال با استفاده از شبکه عصبی مصنوعی، مجله مهندسی مکانیک مدرس، 14(7)، ص 35-47.
]8] طیبی، س., یاقوتیان، ا., فتاحی، ل.، (1400) ، بهکارگیری شبکه عصبی برای پیش بینی موقعیت و راستای عیوب لوله در آزمون فراصوتی با امواج هدایت شده، نشریه فناوری آزمون های غیرمخرب، 2(8)، ص 8-17.
[9] Javadi, M., M. Noorian, and Irani, S., (2021), Nonlinear vibration analysis of cracked pipe conveying fluid under primary and superharmonic resonances, International Journal of Pressure Vessels and Piping, 191, pp 104326.
[10] Kessai, I., Benammar, S., Doghmane, M. Z., and Tee, K. F., (2022), Estimation of circular arc crack depths and locations in rotary drilling pipes subjected to free vibrations, Vibration, 5(1), pp 165-182.
[11] Wu, H., Lv, Y., and Chen, Y., (2022), A method of estimation for the area and direction of pipe crack, in Journal of Physics: Conference Series, 2264(1), pp 012019.
[12] Seguini, M., Khatir, S., Boutchicha, D., Nedjar, D., and Abdel Wahab, M., (2021), Crack prediction in pipeline using ANN-PSO based on numerical and experimental modal analysis, Smart Structures and Systems, 27(3), pp 507-523.
[13] Dimarogonas, A. and Papadopoulos, C., (1983), Vibration of cracked shafts in bending, Journal of sound and vibration, 91(4), pp. 583-593.
_||_