Optimizing the cost of asphalt road pavement using particle swarm optimization algorithm (PSO) and compare it with the Shell method
Subject Areas : Journal of New Applied and Computational Findings in Mechanical SystemsMansour Tohidi 1 , Navid Khayat 2 , Abdoulrasoul Telvari 3
1 - Department of Civil Engineering. Ahvaz Branch. Islamic Azad University. Ahvaz. Iran
2 - Department of Civil Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3 - Department of Civil Engineering. Ahvaz Branch. Islamic Azad University. Ahvaz. Iran
Keywords: asphalt pavement, Shell Pavement Design, AASHTO design method, particle swarm optimization(PSO), optimal pavement design,
Abstract :
[1] AASHTO (American Association of State Highway and Transportation Officials). (1993). AASHTO Guide for Design of Pavement Structures. AASHTO, Washington, DC, USA.
[2] Pryke, A., Evdorides, H., Ermaileh, R. A. (2006). “Optimization of pavement design using a genetic algorithm.” 2006 IEEE International Conference on Evolutionary Computation, IEEE, Vancouver, BC, Canada, pp. 1095–1098.
[3] Pereira, P., Pais, J. (2017). Main flexible pavement and mix design methods in Europe and challenges for the development of an European method., Journal of Traffic and Transportation Engineering (English Edition). 4(4), pp. 316-346..
[4] Ghanizadeh, A.R., Fakhri, M. (2009). A Mixed-integer Programming Model to Determine the Optimum Design of Flexible Pavement Structure.” Australian Journal of Basic and Applied Sciences, 3(3), pp. 1652–1660.
[5] Chang, T. H. (2009). Software Development for Flexible Pavement Thickness Design Based on AASTHO and Road Note 31, Ph.D. Thesis, Universiti Teknologi, Johor, Malaysia.
[6] Purvis, J. (2013). Sensitivity analysis of pavement thickness design software for local roads in Iowa. MS (Master of Science) thesis, University of Iowa.
[7] Fadi M. J., Richard Kim Y., (2012) Calibrating Mechanistic–Empirical Pavement Design Guide for North Carolina Genetic Algorithm and Generalized Reduced Gradient Optimization Methods, Transportation Research Record: Journal of the Transportation Research Board, No. 2305, Transportation Research Board of the National Academies, Washington, D.C., pp. 131–140.
[8] Chang. J-r.(2013) Particle Swarm Optimization Method for Optimal Prioritization of Pavement Sections for Maintenance and Rehabilitation Activities, Applied Mechanics and Materials. 343, pp. 43-49,
[9] Tayebi, N. R., Moghadas Nejad, F., Mola. M., (2014). Comparison between GA and PSO in Analyzing Pavement Management Activities.” Journal of Transportation Engineering 140(1), pp. 99–104.
[10] Mahmood M. Sh., Mathavan. S, M. Rahman .M. (2016). Pavement Management Maintenance Decision Optimization Using a 2 Novel Discrete Bare-Bones Particle Swarm Algorithm, TRB Annual Meeting.
[11] Nik, A. A., Nejad, F. M., Zakeri, H. (2016). Hybrid PSO and GA approach foroptimizing surveyed asphalt pavement inspection units in massive network. Automation in Construction, 71(2), pp. 325–345.
[12] Ahmed, K., Al-Khateeb, B., Mahmood, M. (2018). A chaos with discrete multi-objective particle swarm optimization for pavement maintenance. Journal of Theoretical and Applied Information Technology, 96(8), pp. 2317–2326.
[13] Li, S. T., Zhang, B., Xu, S. J., Zhong, Y. H. (2019). Back-analysis of Pavement Thickness Based on PSO-GA Hybrid Algorithms. IOP Conference Series: Earth and Environmental Science, 252(5).
[14] Inti, S., Anjan Kumar, S. (2021). Sustainable road design through multi-objective optimization: A case study in Northeast India. Transportation Research Part D: Transport and Environment, 91, 102594.
[15] Ahmed, K., Al-Khateeb, B., Mahmood, M. (2019). Application of chaos discrete particle swarm optimization algorithm on pavement maintenance scheduling problem. Cluster Computing, 22, pp. 4647–4657.
[16] Abdi, A., Badiany, M., salehfard, R. (2018). A Comparison of AASHTO and SHELL Methods in Flexible Pavement Design Using ABAQUS Software. Journal of Transportation Research, 15(4), pp. 375-389.
[17] Sabzkouhi,A.M., Haghighi,A., (2016), Uncertainty Analysis of Pipe-Network Hydraulics Using a Many-Objectiv Particle Swarm Optimization, j. Hydraul.Eng., 142, 04016030.
[18] آیین نامه روسازی آسفالتی راه های ایران – نشریه شماره 234، سازمان مدیریت و برنامه ریزی، تهران، ایران.
[19] Shell International Petroleum Company Limited (1978), Shell Pavement Design Manual, London.
_||_