Parallel Machine Scheduling with Controllable Processing Time Considering Energy Cost and Machine Failure Prediction
Subject Areas : Business StrategyYousef Rabbani 1 , Ali Qorbani 2 , Reza Kamran Rad 3
1 - Department of Industrial Engineering, Faculty of Engineering, University of Semnan
2 - Industrial engineering department, Faculty of Engineering, University of Semnan, Semnan, Iran, PostalCode35131-19111
3 - Industrial engineering Department, Faculty of Engineering, University of Semnan, Semnan, Iran, PostalCode35131-19111
Keywords:
Abstract :
Antoniadis, A., Garg, N., Kumar, G., & Kumar, N. (2020). Parallel machine scheduling to minimize energy consumption. Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, DOI:10.1137/1.9781611975994.168.
Arık, O. A., & Toksarı, M. D. (2018). Multi-objective fuzzy parallel machine scheduling problems under fuzzy job deterioration and learning effects. International Journal of Production Research, 56(7), 2488-2505. , DOI: 10.1080/00207543.2017.1388932.
Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Systems with Applications, 173, 114598. , DOI:10.1016/j.eswa.2021.114598.
Bilski, P. (2014). Application of support vector machines to the induction motor parameters identification. Measurement, 51, 377-386. , https://doi.org/10.1016/j.measurement.2013.12.013.
Calabrese, M., Cimmino, M., Fiume, F., Manfrin, M., Romeo, L., Ceccacci, S., Paolanti, M., Toscano, G., Ciandrini, G., & Carrotta, A. (2020). SOPHIA: An event-based IoT and machine learning architecture for predictive maintenance in industry 4.0. Information, 11(4) 202. , https://doi.org/10.3390/info11040202.
Chen, C., Liu, Y., Wang, S., Sun, X., Di Cairano-Gilfedder, C., Titmus, S., & Syntetos, A. A. (2020). Predictive maintenance using cox proportional hazard deep learning. Advanced Engineering Informatics, 44, 101054. , https://doi.org/10.1016/j.aei.2020.101054.
Chen, W.-J. (2009). Minimizing number of tardy jobs on a single machine subject to periodic maintenance. Omega, 37(3), 591-599. , DOI:10.1016/j.omega.2008.01.001.
Cheng, C.-Y., & Huang, L.-W. (2017). Minimizing total earliness and tardiness through unrelated parallel machine scheduling using distributed release time control. Journal of manufacturing systems, 42, 1-10. , DOI: 10.1016/j.jmsy.2016.10.005.
Dang, Q.-V., van Diessen, T., Martagan, T., & Adan, I. (2021). A matheuristic for parallel machine scheduling with tool replacements. European Journal of Operational Research, 291(2), 640-660. , https://doi.org/10.1016/j.ejor.2020.09.050.
Ebrahimi Zade, A., Fakhrzad, M. B., & Hasaninezhad, M. (2016). A Heuristic Algorithm for Solving Single Machine Scheduling Problem with Periodic Maintenance. Journal of System Management, 2(4), 1-12. https://sjsm.shiraz.iau.ir/article_525688_807c6c67d740507609f87b0bb9c09233.pdf , doi: 10.30495/JSM.2016.
Exposito-Izquierdo, C., Angel-Bello, F., Melián-Batista, B., Alvarez, A., & Báez, S. (2019). A metaheuristic algorithm and simulation to study the effect of learning or tiredness on sequence-dependent setup times in a parallel machine scheduling problem. Expert Systems with Applications, 117, 62-74. , DOI: https://doi.org/10.1016/j.eswa.2018.09.041.
Goli, A., & Keshavarz, T. (2021). Just-in-time scheduling in identical parallel machine sequence-dependent group scheduling problem. Journal of Industrial and Management Optimization. , doi: 10.3934/jimo.2021124
Hidri, L., Alqahtani, A., Gazdar, A., & Ben Youssef, B. (2021). Green Scheduling of Identical Parallel Machines with Release Date, Delivery Time and No-Idle Machine Constraints. Sustainability, 13(16), 9277. , https://doi.org/10.3390/su13169277.
Kayvanfar, V., Zandieh, M., & Teymourian, E. (2017). An intelligent water drop algorithm to identical parallel machine scheduling with controllable processing times: a just-in-time approach. Computational and Applied Mathematics, 36(1), 159-184. , https://doi.org/10.1007/s40314-015-0218-3.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, December 2017, 3149-3157.
Kramer, A., Iori, M., & Lacomme, P. (2021). Mathematical formulations for scheduling jobs on identical parallel machines with family setup times and total weighted completion time minimization. European Journal of Operational Research, 289(3), 825-840. , https://doi.org/10.1016/j.ejor.2019.07.006.
Kubiak, W. (1993). Minimizing variation of production rates in just-in-time systems: A survey. European Journal of Operational Research, 66(3), 259-271. , https://doi.org/10.1016/0377-2217(93)90215-9.
Mohr, F., Mejía, G., & Yuraszeck, F. (2021). Single and parallel machine scheduling with variable release dates. arXiv preprint arXiv:2103.01785. ,
https://doi.org/10.48550/arXiv.2103.01785.
Nanthapodej, R., Liu, C.-H., Nitisiri, K., & Pattanapairoj, S. (2021). Hybrid Differential Evolution Algorithm and Adaptive Large Neighborhood Search to Solve Parallel Machine Scheduling to Minimize Energy Consumption in Consideration of Machine-Load Balance Problems. Sustainability, 13(10), 5470. , https://doi.org/10.3390/su13105470.
Nicolo, G., Ferrer, S., Salido, M. A., Giret, A., & Barber, F. (2019). A multi-agent framework to solve energy-aware unrelated parallel machine scheduling problems with machine-dependent energy consumption and sequence-dependent setup time. Proceedings of the International Conference on Automated Planning and Scheduling, DOI: https://doi.org/10.1609/icaps.v29i1.3492.
Nowicki, E., & Zdrzałka, S. (1990). A survey of results for sequencing problems with controllable processing times. Discrete Applied Mathematics, 26(2-3), 271-287. , https://doi.org/10.1016/0166-218X(90)90105-L.
Polyakovskiy, S., & M'Hallah, R. (2014). A multi-agent system for the weighted earliness tardiness parallel machine problem. Computers & operations research, 44, 115-136. , https://doi.org/10.1016/j.cor.2013.10.013.
Rabbani Yousef (2021). A Goal Programming Linear Model for Simultaneous Project Scheduling and Resource Leveling - a Huge Civil Project as a Case Study. Journal of system management, Volume 7, Issue 4, Pages 1-22, doi: 10.30495/JSM.2021.1936452.1503
Salimifard, K., Mohammadi, D., Moghdani, R., & Abbasizad, A. (2019). Green fuzzy parallel machine scheduling with sequence-dependent setup in the plastic moulding industry. Asian Journal of Management Science and Applications, 4(1), 27-48.
Schmidt, B., & Wang, L. (2018). Predictive maintenance of machine tool linear axes: A case from manufacturing industry. Procedia manufacturing, 17, 118-125. , https://doi.org/10.1016/j.promfg.2018.10.022.
Schmitt, J., Bönig, J., Borggräfe, T., Beitinger, G., & Deuse, J. (2020). Predictive model-based quality inspection using Machine Learning and Edge Cloud Computing. Advanced Engineering Informatics, 45, 101101, https://doi.org/10.1016/j.aei.2020.101101.
Schwendemann, S., Amjad, Z., & Sikora, A. (2021). A survey of machine-learning techniques for condition monitoring and predictive maintenance of bearings in grinding machines. Computers in Industry, 125, 103380. , https://doi.org/10.1016/j.compind.2020.103380., doi: https://doi.org/10.1016/j.compind.2020.103380.
Su, L.-H. (2009). Minimizing earliness and tardiness subject to total completion time in an identical parallel machine system. Computers & operations research, 36(2), 461-471. , https://doi.org/10.1016/j.cor.2007.09.013.
Vollert, S., Atzmueller, M., & Theissler, A. (2021). Interpretable Machine Learning: A brief survey from the predictive maintenance perspective. 2021 26th IEEE international conference on emerging technologies and factory automation (ETFA), https://dl.acm.org/doi/10.1109/ETFA45728.2021.9613467, DOI:10.1109/ETFA45728.2021.9613467.
Wang, S., & Liu, M. (2015). Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive maintenance planning. Journal of manufacturing systems, 37, 182-192. , https://doi.org/10.1016/j.jmsy.2015.07.002.
Wang, S., Wang, X., Yu, J., Ma, S., & Liu, M. (2018). Bi-objective identical parallel machine scheduling to minimize total energy consumption and makespan. Journal of Cleaner Production, 193, 424-440., https://doi.org/10.1016/j.jclepro.2018.05.056.
Yazdani, M., & Jolai, F. (2015). A Genetic Algorithm with Modified Crossover Operator for a Two-Agent Scheduling Problem. Journal of System Management, 1(3), 1-13. https://sjsm.shiraz.iau.ir/article_517109_e5b8fcb61a96077c14f7372cc7ac9d52.pdf , doi: 10.30495/JSM.2015.
Zarandi, M., & Kayvanfar, V. (2015). A bi-objective identical parallel machine scheduling problem with controllable processing times: a just-in-time approach. The International Journal of Advanced Manufacturing Technology, 77(1), 545-563, https://doi.org/10.1007/s00170-014-6461-8.