A short review on the synthesis of nanomaterials by microwave heating in the presence of ionic liquids
Subject Areas : Synthesis and Characterization of NanostructuresAmirhossein Ghanbari 1 , Maryam Tohidi 2
1 - ِِDepartment of Nanochemical Engineering, Faculty of Advanced Technologies, Shiraz University. Iran
2 - Department of Nanochemical Engineering, Faculty of Advanced Technologies, Shiraz University. Iran
Keywords: Nanostructure, nanotechnology, Microwaves, Ionic liquid,
Abstract :
Metallic nanostructures have received a lot of attention. Rapid synthesis using microwaves is a suitable technology that has great potential for use in industrial fields due to the significant reduction in reaction time, increase in product yield, and the use of safe heating sources. The heating method with the help of microwaves has attracted a lot of attention as a suitable method for the synthesis of metal nanostructures in the solution phase. This method has been used to synthesize many nanostructures such as Ag, Au, Pt, Pd and Au-Pd. Not only spherical nanoparticles, but plate, rod, wire, tube and dendritic nanostructures are prepared in a few minutes. Generally, nanostructures with smaller size, narrower size distribution and higher degree of crystallinity are prepared method compared to conventional oil bath heating methods. On the other hand, room temperature ionic liquids (RTILs) have attracted much attention in recent years. ILs can absorb microwaves and increase the reaction speed and decrease the reaction time. The large cations with high polarizability in ILs make these materials suitable solvents for absorbing microwaves. Therefore, the use of microwaves as a heat source along with ILs as a catalyst, solvent, additive, co-solvent and template leads to the creation of a fast and environmentally friendly method (MAIL) for the synthesis of various nanostructures.
1. S. Ramanathan, S. C. Gopinath, M. M. Arshad, P. Poopalan, V. Perumal, (2021). Nanoparticle synthetic methods: Strength and limitations. In Nanoparticles in Analytical and Medical Devices (pp. 31-43). Elsevier.
2. M. C.Daniel, D. Astruc, Chem. Rev., 104, 293 (2004).
3. M. A. El-Sayed, Acc. Chem. Res., 37, 326 (2004).
4. A. C. Templeton, M. P. Wuelfing, R. W. Murray, Acc. Chem. Res., 33, 27 (2000).
5. T. Takai, A. Shibatani, Y. Asakuma, A. Saptoro, C. Phan, Chem. Eng. Res. Des., 182, 714 (2022).
6. N. Maleki, A. Safavi, E. Farjami, F. Tajabadi, Anal. Chim. Acta, 611, 151(2008).
7. A. Safavi, N. Maleki, F. Tajabadi, E. Farjami, Electrochem. Commun. 9, 1963(2007).
8. A. Safavi, N. Maleki, E. Farjami, Electrocatalysis, 1533(2009).
9. X. Wang, J. Song, Z. L. Wang, J. Mater. Chem., 17, 711(2007).
10. Y. Xia, N. Halas, Mater. Res. Bull., 30, 338(2005).
11. P. D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev., 35, 1195(2006).
12. V. Polshettiwar, M. N. Nadagouda, R. S. Varma, Aust. J. Chem., 62, 16(2009).
13. L. Ren, L. Meng, Q. Lu, Z. Fei, P. J. Dyson, J. Colloid Interface Sci., 323, 260(2008).
14. M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Chem. Eur. J., 11, 440(2005).
15. M. Hassanpour, M. H. Shahavi, G. Heidari, A. Kumar, M. Nodehi, F. D. Moghaddam, E. N. Zare, J. Ionic Liq., 2, 100033(2022)..
16. Nanoscale Materials in Chemistry; Klabunde, K. J.; Richards, R. M., Eds.; Second Ed.; Wiley, 2009.
17. P. Ray, M. Pilania, Mater. Today: Proceed., 47, 2835(2021).
18. J. Dupont, De Souza, F. Roberto, P. A. Z. Suarez, Chem. Rev., 102, 3667(2002).
19. J. Fuller, Carkin, R. T.; Osteryoung, R. A. J. Electrochem. Soc. 1997, 144, 3881-3886.
20. Y. L. Zhao, J. M. Zhang, J. Jiang, C. F. Chen, F. Xi, J. Polym. Sci. Part A, 40, 3360(2002).
21. S. V. Dzyuba, R. A. Bartsch, Angew. Chem., 115, 158(2003).
22. X. Liu, J. Ma, W. Zheng, Rev. Adv. Mater. Sci., 27, 43(2011).
23. Y. Zhou, M. Antonietti, Adv. Mater., 15, 1452(2003).
24. A. Taubert, Angew. Chem. Int. Ed., 43, 5380(2004).
25. Y. Wang, H. Yang, J. Am. Chem. Soc., 127, 5316(2005).
26. F. Endres, M. Bukowski, R. Hempelmann, Natter, H. Angew. Chem. Int. Ed., 42, 3428(2003).
27. S. Głowniak, B. Szczęśniak, J. Choma, M. Jaroniec, Adv. Mater., 33, 2103477(2021).
28. R. Martínez-Palou, Mol. Divers., 14, 3(2010).
29. I. Bilecka, M. Niederberger, Nanoscale, 2, 1358(2010).
30. H. Barani, B. Mahltig, J. Cluster Sci., 1-11(2020).
31. Z. Li, Z. Liu, J.Zhang, B. Han, J. Du, Y. Gao, T. Jiang, J. Phys. Chem. B, 109, 14445(2005).
32. N. E. Leadbeater, H. M. Torenius, J. Org. Chem., 3145(2002).
33. Y. J. Zhu, W. W. Wang, R. J. Qi, X. L. Hu, Angew. Chem. Int. Ed., 43, 1410(2004).
34. Y. Jiang, Y. J. Zhu, G. F. Cheng, Cryst. Growth Des., 6, 2174(2006).
35. Y. Jiang, Y. J. Zhu, J. Phys. Chem. B, 109, 4361(2005).
36. C. Lorbeer, J. Cybinska, A. V. Mudring, Chem. Commun., 46, 571(2010).
37. G. Bühler, C. Feldmann, Angew. Chem. Int. Ed., 45, 4864(2006).
38. D. D. Lovingood, G. F. Strouse, Nano Lett., 8, 3394(2008).
39. J. A. Gerbec, D. Magana, A. Washington, G. F. Strouse, J. Am. Chem. Soc., 127, 15791(2005).
40. H. Hu, H. Yang, P. Huang, D. Cui, Y. Peng, J. Zhang, F. Lu, J. Lian, D. Shi, Chem. Commun., 46, 3866(2010).
41. D. S. Jacob, L. Bitton, J. Grinblat, I. Felner, Y. Koltypin, A. Gedanken, Chem. Mater., 18, 3162(2006).
42. S. Al Kiey, A. Asem, H. K. Farag, Egyptian J. Chem., 66(12), 397(2023).
43. S. H. Kavya, V. Vijaya Kumar, C. R. Kumar, Indian J. Chem. -Section A (IJCA), 57(8-9), 1112(2020).
44. Y. Jiang, Y. Zhu, J. Chem. Lett., 33, 1390(2004).
45. W. W. Wang, J. Y. Zhu, F. G. Cheng, Y. H. Huang, Mater. Lett., 60, 609(2006).
46. W. W. Wang, Y. Zhu, J. Cryst. Growth. Des., 5, 505(2005).
47. D. S. Jacob, I. Genish, L. Klein, A. Gedanken, J. Phys. Chem. B, 110, 17711(2006).
48. A. Safavi, S. Momeni, M. Tohidi, Electroanalysis, 24, 1981(2012).
49. A. Safavi, M. J. Tohidi, Nanosci. Nanotechnol., 14, 7189(2014).
50. H. Ullah, C. D. Wilfred, M. S. Shaharun, J. Chin. Chem. Soc., 64, 1164(2017).
51. J. R. Lee, J. C. Park, E. M., Han, T. W. KIM, (2020, November). Synthesis of Silver Nanocatalysts Using Microwave Irradiation in Ionic Liquid for Reduction of Carbon Dioxide to CO By Solar-Driven Electrochemical. In Electrochemical Society Meeting Abstracts prime2020 (No. 63, pp. 3224-3224). The Electrochemical Society, Inc..