Ligandless preconcentration and determination of cadmium in food and human serum samples by dispersive liquid- liquid microextraction method based on a task-specific ionic liquid combined with flame atomic absorption spectrometry
Subject Areas : OthersNeda Sarrafi 1 , Susan Sadeghi 2
1 - Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
2 - Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
Keywords: Task specific ionic liquid, Flame atomic absorption spectrometry, Dispersive liquid-liquid microextraction, Cadmium ions,
Abstract :
In the present paper, a simple, and reliable method for the preconcentration of cadmium ions based on dispersive liquid-liquid microextraction technique is introduced. A new task specific ionic liquid (TSIL) was used as an extractant for the selective preconceration of Cd2+ ions from aqueous solution and determination by flame atomic absorption spectrometer (AAS). Parameters affecting the extraction of Cd2+ ions such as pH solution, TSIL concentration, centrifugation time, hydrophobic salt concentration, nonionic surfactant concentration, and ionic strength were optimized. Under the optimal conditions, the calibration curve was linear in the concentration range of 5 - 250 µg L-1 with a detection limit of 0.42 µg L-1 Cd2+. Since, TSIL has a high affinity toward cadmium ions, interferents have little effects on the microextraction, so satisfactory recoveries were obtained for the extraction of trace amounts of cadmium ions from real samples (blood serum, milk and honey).
1. A. Wilk, E. Kalisińska, D.I. Kosik-Bogacka, M. Romanowski, J. Różański, K. Ciechanowski, M. Słojewski, N. Łanocha-Arendarczyk, Environ. Geochem. Health. 39, 889 (2017).
2. R.S. Pappas, M.R. Fresquez, C.H. Watson, J. Anal. Toxicol. 39, 45 (2015).
3. Unites States Environmental Protection Agency, National Primary Drinking Water Standards, June 2003
4. Official Journal of the European Communities, Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption.
5. World Health Organization, Guidelines for Drinking-Water Quality, 3rd ed., vol. 1, Recommendations, Geneva, (2006).
6. M. Behbahani, P.G. Hassanlou, M.M. Amini, F. Omidi, A. Esrafili , M. Farzadkia, A. Bagheri, Food Chem. 187, 82 (2015).
7. F. Omidi, M. Behbahani, M. K. Bojdi, S.J.Shahtaheri, J. Magn. Magn.Mater. 395, 213 (2015).
8. J. S. Mandlate, B.M. Soares, T.S. Seeger, P. Dalla Vecchia, P.A. Mello, E. M. M. Flores, F.A. Duarte, Food Chem. 221, 907 (2017).
9. S. Moinfar, G. Khayatian, Microchem. J. 132, 293 (2017).
10 A.R. Borges, D.N. Bazanella, Á.T. Duarte, A.V. Zmozinski, M.G.R. Vale, B. Welz,, Microchem. J. 130, 116 (2017).
11.C. Waterlot, F. Douay, Measurement. 46, 2348 (2013).
12. R. Galbeiro, S. Garcia, I. Gaubeur, J. Trace Elem. Med Biol. 28, 160 (2014).
13. A. Cervantes, R. Rodríguez, L. Ferrer, V. Cerdà, L. O. Leal, Microchem. J. 132, 107 (2017).
14. V. Yilmaz, Z. Arslan, L. Rose, M. D. Little, Talanta. 115, 681 (2013).
15. M.C. Barciela-Alonso, V. Plata-García, A. Rouco-López, A. Moreda-Piñeiro, P. Bermejo-Barrera, Microchem. J. 114, 106 (2014).
16. A. Damokhi, S. Yousefinejad, R. Yarmohammadi, S. Jafari, J. Mol. Liquids, 344, 117732(2021).
17. L. B. Escudero, A.C. Grijalba, E. M. Martinis, R. G. Wuilloud, Anal. Bioanal. Chem. 405, 7597 (2013).
18. S. Talpur, T. Gul Kazi, H. Afridi, F N. Talpur, S. Nizamani, A. Lashari, A. Akhtar, M. Khan, J. AOAC Int. 101, 883 (2018).
19. I. Pacheco-Fernández, V. Pino, J. Lorenzo-Morales, J. H. Ayala, A. M. Afonso, Anal. Bioanal. Chem. 410, 4701 (2018).
20.Q.i. Zhang, S. Ren, C. Gu, A. Li, S. Xue, J. Mol. Liq. 327, 114840 (2021).
21. M.V. Shashkov, V.N. Sidelnikov, A.A. Bratchikova, New Stationary Ionic Liquid Phases with Quinolinium Cations for Capillary Gas Chromatography, Anal. Lett. 53, 84 (2020).
22. B..Y. Hui, N.N.M. Zain, Sharifah Mohamad, P. Varanusupakul, H. Osman, M. Raoov, Food Chem. 314, 126214 (2020).
23. N. Altunay, A. Elik, R. Gürkan, Microchem. J. 147, 49 (2019).
24. B. Dutta, R. Ruhela, M. Yadav, A.K. Singh, K.K. Sahu, N.P.H. Padmanabhan, J. K. Chakravartty, Sep. Purif. Technol. 175, 158 (2017).
25. S. Platzer, M. Kar, R. Leyma, S. Chib, A. Roller, F. Jirsa, R. Krachler, D.R. MacFarlane, W.Kandioller,B.K. Keppler, J. Hazard. Mater. 324 241 (2017).
26. S. Sadeghi, S. Olieaei, Spectrochim. Acta, A: Mol. Biomol. Spect. 223, 117349 (2019).
27. N.F. Ramandi, F. Shemirani, Talanta. 131, 404 (2015).
28. N. Khan, T. G. Kazi, H. I. Afridi, M. B. Arain, Anal. Lett. 51, 673 (2018).
29. 22. M. Baghdadi, F. Shemirani, Anal. Chim. Acta. 613, 56 (2008).
30. X. Xu, Z. Liu, X. Zhao, R. Su, Y. Zhang, J. Shi, Y. Zhao, L. Wu, Q. Ma, X. Zhou, J. Sep. Sci. 36 585 (2013).
31. C. F. Poole, N. Lenca, TrAC Anal. Chem. 71 144 (2015).
32. S. Walas, E. Borowska, M. Herda, M. Herman, H. Mrowiec, Int. J. Environ. Anal. chem. 72, 217 (1998).
33. M. Chamsaz, A. Atarodi, M. Eftekhari, S. Asadpour, M. Adibi, J. Adv. Res. 4, 35 (2013).
34. S. Khan, E. Yilmaz, T.G. Kazi, M. Soylak, Soil, Air, Water. 42, 1083 (2014).
35. F. Bamdad, M. Ardalani, M.R. Sangi, J. the Brazilian Chem. Soc. 25, 264 (2014).
36. F. S. Rojas, C.B. Ojeda, J.C. Pavon, Anal. Methods. 3, 1652 (2011).
37. S. M. Sorouraddina, M. A.Farajzadeha, H. Dastoori, Talanta 208, 120485 (2020).