Theoretical study of methane adsorption on the (8,0) single wall carbon nanotube decorated with Ag-Pd dimer
Subject Areas : Applications of NanostructuresZahra Karami Horastani 1 , Saber Jamali Hajiani 2
1 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Keywords: methane, density functional theory, Ag-Pd Dimer, Single Wall Carbon Nanotube,
Abstract :
In the present paper, methane adsorption on the (8,0) single wall carbon nanotube decorated with Ag-Pd dimer is investigated using density functional theory. The results show that methane adsorption on the nanotube is an exothermic and physical process accompanied with the adsorption energy of -340 meV. The amount of adsorption energy indicates a significant increase in the adsorption energy of methane molecule on the decorated nanotube compared to pure one (-80 meV). The proposed structure before methane adsorption is a bipolar magnetic semiconductor with a small gap (-150 meV). On the other hand, methane adsorption energy is about twice the energy gap. This allows the carrier to be injected into the nanotube due to the heat of the reaction, followed by a change in conductivity. Therefore, the proposed structure has the potential to be used as a sensor based on reaction temperature and conductivity change.
1. G. De Smedt, F. De Corte, R. Notele, J. Berghmans, J. Hazard. Mater., 70, 105 (1999).
2. M.J. Bezdek, S.-X.L. Luo, K.H. Ku, T.M. Swager, PNAS, 118, e2022515118(2021).
3. G. Chimowa, Z.P. Tshabalala, A.A. Akande, G. Bepete, B. Mwakikunga, S.S. Ray, E.M. Benecha, Sens. Actuators B Chem., 247, 11(2017).
4. H. Cui, X. Zhang, J. Zhang, M. Ali Mehmood, ACS omega, 3, 16892(2018).
5. T. Hong, J.T. Culp, K.-J. Kim, J. Devkota, C. Sun, P.R. Ohodnicki, TrAC, Trends Anal. Chem., 125, 115820(2020).
6. N. Janudin, N. Abdullah, F.M. Yasin, M.H. Yaacob, M.Z. Ahmad, L.C. Abdullah, R.N.I.R. Othman, N.A.A. Syah, S. Sobri, N.A.M. Kasim, JDSET, 1, 2(2018).
7. M.-Z. Jiao, X.-Y. Chen, K.-X. Hu, D.-Y. Qian, X.-H. Zhao, E.-J. Ding, Rare Metals, 40, 1515(2021).
8. G. Verma, A. Gupta, J. Mater. NanoSci., 9, 3(2022).
9. Y. Wang, J.T. Yeow, J. Sens., (2009). https://doi.org/10.1155/2009/493904
10. J. Li, X. Huang, W. Shi, M. Jiang, L. Tian, M. Su, J. Wu, Q. Liu, C. Yu, H. Gu, Sens. Actuators B Chem., 330, 129311(2021).
11. I. Sharafeldin, S. Garcia-Rios, N. Ahmed, M. Alvarado, X. Vilanova, N.K. Allam, J. Environ. Chem. Eng., 9, 104534(2021).
12. J.K. Kim, M. Han, Y. Kim, H.K. An, S. Lee, S.H. Kong, D. Jung, J. Nanosci. Nanotechnol., 21, 3707(2021).
13. S.-J. Young, Y.-H. Liu, Z.-D. Lin, K. Ahmed, M.N.I. Shiblee, S. Romanuik, P.K. Sekhar, T. Thundat, L. Nagahara, S. Arya, J. Electrochem. Soc., 167, 167519(2020).
14. M. Orio, D.A. Pantazis, F. Neese, Photosynth. Res., 102, 443(2009).
15. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Condens. Matter Phys., 21, 395502,(2009).
16. M. Ernzerhof, J.P. Perdew, Chem. Phys., 109, 3313(1998).
17. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, Chem. Phys., 132, 154104(2010).
18. R. Evarestov, V. Smirnov, Phys. Rev. B Condens. Matter, 70, 233101(2004).
19. C. Yan, Q. Zeng, J. Zhu, Carbon Lett., 29, 625(2019).
20. Z.K. Horastani, F.K. Horestani, S.J. Hajiani, R. Safaiee, S.J. Hashemifar, IEEE Access, 9, 122951(2021).
21. Y.H. Zhang, Y.B. Chen, K.G. Zhou, C.H. Liu, J. Zeng, H.L. Zhang, Y. Peng, Nanotechnology, 20(18), 185504(2009).
22. S. Peng, K. Cho, P. Qi, H. Dai, Chem. Phys. Lett., 387(4-6), 271(2004).