Study on the interaction between glutathione-capped gold nanoclusters (GSH-AuNCs) and bovine serum albumin (BSA) with spectroscopic technique
Subject Areas : OthersZahra Shojaeifard 1 , Bahram Hemmateenejad 2
1 - Department of Chemistry, Shiraz University, Shiraz,, Iran
2 - Department of Chemistry, Shiraz University, Shiraz,, Iran
Keywords: Bovine serum albumin, Gold nanoclusters, Fluorescence spectroscopy,
Abstract :
The interactions of Gold nanoclusters capped with glutathione (GSH-AuNCs) with bovine serum albumin (BSA) have been studied by fluorescence spectroscopic technique at pH 7.4. The quenching constants and binding parameters (binding constants and number of binding sites) were determined by fluorescence quenching method. The obtained results revealed the presence of a static type of quenching mechanism in the binding of GSH-AuNCs with BSA. Based on the thermodynamic parameters extracted from the fluorescence data, it was shown that binding of GSH-AuNCs to BSA was driven mainly by van der Waals and hydrogen bonding interactions. The displacement experiment shows that GSH-AuNCs can bind to the subdomain IIA (site I) of albumin.
1. D. Tian, Z. Qian, Y. Xia, and C. Zhu, Langmuir 28, 3945 (2012).
2. K.-Y. Pu, Z. Luo, K. Li, J. Xie, and B. Liu, J. Phys. Chem. C 115, 13069 (2011).
3. Z. Shojaeifard, B. Hemmateenejad, and M. Shamsipur, ACS Appl. Mater. Interfaces 8, 15177 (2016).
4. Y. Wang, Y. Cui, Y. Zhao, R. Liu, Z. Sun, W. Li, and X. Gao, Chem. Commun. 48, 871 (2012).
5. X. Wu, X. He, K. Wang, C. Xie, B. Zhou, and Z. Qing, Nanoscale 2, 2244 (2010).
6. C. Wang, Y. Wang, L. Xu, X. Shi, X. Li, X. Xu, H. Sun, B. Yang, and Q. Lin, Small 9, 413 (2013).
7. Y. Tao, Z. Li, E. Ju, J. Ren, and X. Qu, Chem. Commun. 49, 6918 (2013).
8. T. Chen, S. Xu, T. Zhao, L. Zhu, D. Wei, Y. Li, H. Zhang, and C. Zhao, ACS Appl. Mater. Interfaces 4, 5766 (2012).
9. Z. Sun, Y. Wang, Y. Wei, R. Liu, H. Zhu, Y. Cui, Y. Zhao, and X. Gao, Chem. Commun. (Camb). 47, 11960 (2011).
10. D. Shangguan, Z. Tang, P. Mallikaratchy, Z. Xiao, and W. Tan, ChemBioChem 8, 603 (2007).
11. J. Li, X. Zhong, F. Cheng, J. R. Zhang, L. P. Jiang, and J. J. Zhu, Anal. Chem. 84, 4140 (2012).
12. L. Shang, R. M. Dörlich, V. Trouillet, M. Bruns, and G. U. Nienhaus, Nano Res. 5, 531 (2012).
13. C. Zheng, H. Wang, W. Xu, C. Xu, J. Liang, and H. Han, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 118, 897 (2014).
14. O. Khani, H. R. Rajabi, M. H. Yousefi, A. A. Khosravi, M. Jannesari, and M. Shamsipur, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79, 361 (2011).
15. M. D. Aseman, S. Aryamanesh, Z. Shojaeifard, B. Hemmateenejad, and S. M. Nabavizadeh, Inorg. Chem. 58, 16154 (2019).
16. B. Hemmateenejad and S. Yousefinejad, J. Mol. Struct. 1037, 317 (2013).
17. S. Ranjbar, Y. Shokoohinia, S. Ghobadi, N. Bijari, S. Gholamzadeh, N. Moradi, M. R. Ashrafi-Kooshk, A. Aghaei, and R. Khodarahmi, Sci. World J. 2013, 1 (2013).
18. T. Chakraborty, I. Chakraborty, S. P. Moulik, and S. Ghosh, Langmuir 25, 3062 (2009).
19. Z. Luo, X. Yuan, Y. Yu, Q. Zhang, D. T. Leong, J. Y. Lee, and J. Xie, J. Am. Chem. Soc. 134, 16662 (2012).
20. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Third (2006).
21. L. Shang, Y. Wang, J. Jiang, and S. Dong, Langmuir 23, 2714 (2007).
22. S. H. D. P. Lacerda, J. J. Park, C. Meuse, D. Pristinski, M. L. Becker, A. Karim, and J. F. Douglas, ACS Nano 4, 365 (2010).
23. A. Selva Sharma and M. Ilanchelian, J. Phys. Chem. B 119, 9461 (2015).
24. G. Scatchard, Ann. N. Y. Acad. Sci. 51, 660 (1949).