Risk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
Subject Areas : Financial MathematicsMaryam Tahmasebi 1 , Gholam Hossein Yari 2
1 - Department of Applied Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran
2 - Department of Applied Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran
Keywords:
Abstract :
[1] Bakhshmohammadlou, M., Farnoosh, R., Numerical Solution of Multidimensional Exponential Levy Equation by Block Pulse Function, Advances in Mathematical Finance and Applications, 2020, 5(2), P. 247-259. Doi: 10.22034/amfa.2020.1873599.1260
[2] Carr, P., Geman, H., Madan, D. B., Yor, M., The fine structure of asset returns: An empirical investigation, The Journal of Business, 2002, 75(2), P.305-332. Doi:10.1086/338705
[3] Cont, R., Tankov, P., Financial Modeling with Jump Processes, 2004, Chapman & Hall/CRC, Boca Raton. ISBN: 9781584884132
[4] Delbaen, F., Grandits, P., Rheinländer, T., Samperi, D., Schweizer, M., Stricker, C., Exponential hedging and entropic penalties, Mathematical finance, 2002, 12(2), P. 99-123. Doi: 10.1111/1467-9965.02001
[5] Fujiwara, T., Miyahara, Y., The minimal entropy martingale measures for geometric Lévy processes, Finance and Stochastics, 2003, 7(4), P.509-531. Doi:10.1007/s007800200097
[6] Fujisaki, M., Zhang, D., Evaluation of the MEMM, parameter estimation and option pricing for geometric Lévy processes, Asia-Pacific Financial Markets, 2009, 16(2), P.111-139. Doi: 10.1007/s10690-009-9089-1
[7] Glasserman, P., Heidelberger, P., Shahabuddin. P., Importance sampling and stratification for value-at-risk, IBM Thomas J. Watson Research Division,1999. (www.gsb.columbia.edu/faculty/pglasserman/Other/pg-var.pdf)
[8] Glasserman, P., Heidelberger, P., Shahabuddin, P., Variance reduction techniques for estimating value-at-risk, Management Science, 2000, 46(10), P.1349-1364. ISBN:0-7803-6582-8
[9] Glasserman, P., Heidelberger, P., Shahabuddin, P., Efficient Monte Carlo methods for value-at-risk, IBM Thomas J. Watson Research Division, 2000.
[10] Hubalek, F., Sgarra, C., Esscher transforms and the minimal entropy martingale measure for exponential Lévy models, Quantitative finance, 2006, 6(02), P.125-145. Doi: 10.1080/14697680600573099
[11] Izadikhah, M., Improving the Banks Shareholder Long Term Values by Using Data Envelopment Analysis Model, Advances in Mathematical Finance and Applications, 2018, 3(2), P.27-41.
Doi: 10.22034/amfa.2018.540829
[12] Jeanblanc, M., Klöppel, S., Miyahara, Y., Minimal fq-martingale measures for exponential Lévy processes, The Annals of Applied Probability, 2007, 17(5/6), P.1615-1638. Doi: 10.1214/07-AAP439
[13] Jeanblanc, M., Yor, M., Chesney, M., Mathematical methods for financial markets, Springer Science & Business Media, 2009. ISBN-13: 978-1852333768
[14] Kind, A., Pricing American-style options by simulation, Financial markets and portfolio management, 2005, 19(1), P. 109-116. Doi: 10.1007/s11408-005-2300-0
[15] Miyahara Y., Moriwaki N., Volatility Smile/Smirk Properties of [GLP & MEMM] Models, Discussion Papers in Economics, Nagoya City University, 405, 2004, P.1-16.
[16] Miyahara, Y., Option pricing in incomplete markets: Modeling based on geometric Lévy processes and minimal entropy martingale measures, World Scientific, 2011, 3. ISBN-13:978-1848163478
[17] Navidi, S., Rostamy-Malkhalifeh, M., Banihashemi, S., Using MODEA and MODM with Different Risk Measures for Portfolio Optimization, Advances in Mathematical Finance and Applications, 2020, 5(1), P. 29-51. Doi: 10.22034/amfa.2019.1864620.1200
[18] Paziresh, M., Jafari, M., Feshari, M., Confidence Interval for Solutions of the Black-Scholes Model, Advances in Mathematical Finance and Applications, 2019, 4(3), P. 49-58. Doi: 10.22034/amfa.2019.1869742.1231
[19] Tankov, P., Financial modeling with Lévy processes, 2010. HAL Id: cel-00665021
[20] Tahmasebi, M., Yari, G. H., Minimal relative entropy for equivalent martingale measures by low-discrepancy sequence in Lévy process, Stochastics, 2019, P. 1-18. Doi: 10.1080/17442508.2019.1642339
[21] Tehranchi, M. R., Asymptotics of implied volatility far from maturity, Journal of Applied Probability, 2009, 46(3), P. 629-650. Doi: 10.1239/jap/1253279843
[22] Tehranchi, M. R., Implied volatility: long maturity behavior, Encyclopedia of Quantitative Finance, 2010. Doi: 10.1002/9780470061602.eqf08011
[23] Tilley, J. A., Valuing American options in a path simulation model, Insurance Mathematics and Economics, 1995, 2(16), P. 169. Doi:10.1016/0167-6687(95)91768-h