The sustainability radius of the cost efficiency in Interval Data Envelopment Analysis: A case study from Tehran Stocks
Subject Areas : Financial and Economic ModellingEsmaeil Mombini 1 , Mohsen Rostamy-Malkhalifeh 2 , Mansour Saraj 3
1 - Department of mathematics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 - Department of Mathematics, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran|Department of mathematics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
Keywords:
Abstract :
References
[1] Allahyar, M., Rostamy-Malkhalifeh, M., Negative data in data envelopment analysis: Efficiency analysis and estimating returns to scale, Computers and Industrial Engineering, 2015, 82, P.78-81.
[2] Amirteimoori, A., and Kordrostami, S., Azizi, H., Measurement of overall performances of decision making units in the presence of interval data, International Journal of operational Research, 2017, 28(4), P.429-447.
[3] Anderson, P., Peterson, N.C. A procedure for ranking efficient units in Data Envelopment Analysis, Management Science, 1993, 39, P.1261-1264. Doi: 10.1287/mnsc.39.10.1261
[4] Azizi, H., Amirteimoori, A. and Kordrostami, S., A note on dual models of interval DEA and its extension to interval data, International Journal of Industrial Mathematics, 2017, 10(2), P.115-130.
[5] Banker, R.D., Charnes, A., Cooper, W.W., Some models for estimating technical and scale inefficiencies in DEA, Management Science, 1984, 30, P.1078-1092. Doi: 10.1287/mnsc.30.9.1078
[6] Camanho, A. S., Dyson, R. G., Cost efficiency measurement with price uncertainty: a DEA application to bank branch assessments, European journal of operational research, 2005, 161(2), P.432-446.
[7] Charnes, A., Cooper, W.W., Rhodes, E., Measuring the efficiency of decision making units, European Journal of Operational Research, 1978, 2, P. 429-444. Doi: 10.1016/0377-2217(78)90138-8
[8] Charnes, A., Cooper, W. W., Lewin, A. Y., Morey, R. C., Rousseau, J., Sensitivity and stability analysis in DEA, Annals of Operations Research, 1984, 2(1), P.139-156. Doi: 10.1007/BF01874736
[9] Charnes, A., Rousseau, J. J., Semple, J. H., Sensitivity and stability of efficiency classifications in data envelopment analysis, Journal of productivity analysis, 1996, 7(1), P.5-18. Doi: 10.1007/BF00158473
[10] Cherchye, L., De Rock, B., Vermeulen, F., Analyzing cost-efficient production behavior under economies of scope: A nonparametric methodology, Operations Research, 2008, 56(1), P.204-221.
[11] Cinaroglu, S., Oncology services efficiency in the age of pandemic: A jackknife and bootstrap sensitivity analysis for robustness check of DEA scores, Journal of Cancer Policy, 2021, 27, P.100-262.
[12] Cooper, W.W., Park, K.S., Yu, G., IDEA and AR-IDEA: models for dealing with imprecise data in DEA, Management Science, 1999, 45, P.597-607. Doi: 10.1287/mnsc.45.4.597
[13] Cooper, W. W., Thompson, R. G., Thrall, R. M., Introduction: Extensions and new developments in DEA, Annals of operations Research, 1996, 66(1), P.1-45. Doi: 10.1007/BF02125451
[14] Cooper, W.W., Park, K.S., Yu, G., IDEA (imprecise data envelopment analysis) with CMDs (column maximum decision- making units, Journal of the Operational Research Society, 2001, 52(2), P.176-181.
[15] Despotis, D.K., and Smirlis, Y.G., Data envelopment analysis with imprecise data, European Journal of Operational Research, 2002, 140, P.24-36. Doi: 10.1016/S0377-2217(01)00200-4
[16] Ebrahimi, B., Efficiency distribution and expected efficiencies in DEA with imprecise data, Journal of Industrial and Systems Engineering, 2019, 12(1), P.185-197.
[17] Entani, T., Maeda, Y., and Tanaka, H., Dual models of interval DEA and its extension to interval data, European Journal of Operational Research, 2002, 136, P.32-45. Doi: 10.1016/S0377-2217(01)00055-8
[18] Yang, G.L., and Emrouznejad, A., Modelling efficient and anti-efficient frontiers in DEA without explicit inputs, International Journal of Operational Research, 2019, 35(4), P.505-528. Doi: 10.1504/IJOR.2019.10022812
[19] Esmaeili, M., An Enhanced Russell Measure in DEA with interval data, Applied Mathematics and Computation, 2012, 219, P.1589-1593. Doi: 10.1016/j.amc.2012.07.060
[20] Fang, L., Li, H., A comment on “cost efficiency in data envelopment analysis with data uncertainty, European journal of operational research, 2012, 220(2), P.588-590. Doi: 10.1016/j.ejor.2012.01.053
[21] Färe, R., Grosskopf, S., A nonparametric cost approach to scale efficiency, The Scandinavian Journal of Economics, 1985, P.594-604. Doi: 10.2307/3439974
[22] Färe, R., Grosskopf, S., and Lovell, C.A.K., The measurement of efficiency of production, Kluwer-Nijhoff, Boston, 1985.
[23] Farrel, M. J., The Measurement of Productive Efficiency. MJ Farrell, Journal of the Royal Statistical Society, SeriesA (General), 1957, 120(3), P. 253-290. Doi: 10.2307/2343100
[24] Ghyasi, A., An investigation of the relationship between earnings management and financial ratios (Panel data approach), International Journal of Economics and Financial Issues, 2017, 7(1). P. 608-612.
[25] Hatami-Marbini, A., Emrouznejad, A. and Agrell, P.J. Interval data without sign restrictions in DEA, Applied Mathematical Modelling, 2014, 38, P.2028-2036. Doi: 10.1016/j.apm.2013.10.027
[26] He, F., Xu, X., Chen, R., Zhang, N., Sensitivity and stability analysis in DEA with bounded uncertainty, Optimization Letters, 2016, 10(4), P.737-752. Doi: 10.1007/s11590-015-0895-2
[27] Jabbari, A., Hosseinzadehlotfi, F., Jahanshahloo, G., Rostamy-Malkhalifeh, M., Ranking all units with non-radial models in DEA. International Journal of Nonlinear Analysis and Applications, 2019, 10(2), P. 111-129. Doi: 10.22075/ijnaa.2019.4179
[28] Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., and Moradi, M., Sensitivity and stability analysis in DEA with interval data, Applied Mathematics and Computation, 2004, 156, P.463-477. Doi: 10.1016/j.amc.2003.08.005
[29] Jahanshahloo, G. R., Soleimani-Damaneh, M., Mostafaee, A., Cost efficiency analysis with ordinal data: A theoretical and computational view, International Journal of Computer Mathematics, 2007, 84(4), P.553-562. Doi: 10.1080/00207160701242243
[30] Jiang, B., Lio, W., Li, X., An Uncertain DEA Model for Scale Efficiency Evaluation, IEEE Transaction on Fuzzy Systems, 2018, P.1-9. Doi: 10.1109/TFUZZ.2018.2883546.
[31] Kao, C., and Liu, S., Scale Efficiency Measurement in Data Envelopment Analysis with Interval Data: A Two-Level Programming Approach, Journal of CENTRUM Cathedra, 2011, 4, P.224-235. Doi: 10.7835/jcc-berj-2011-0060
[32] Kim, S.H., Park, C.K., and Park, K.S., An application of data envelopment analysis in telephone offices evaluation with partial data, Computers and Operations Research, 1999, 26, P.59-72. Doi: 10.1016/S0305-0548(98)00041-0
[33] Kordrostami, S., Jahani Sayyad Noveiri, M., Evaluating the performance and classifying the interval data in data envelopment analysis, International Journal of Management Science and Engineering Management, 2014, 9(4), 243-248. Doi: 10.1080/17509653.2014.900655
[34] Kuosmanen, T., Post, T., Measuring economic efficiency with incomplete price information, European Journal of Operational Research, 2003, 144(2), P.454-457. Doi:10.1016/S0377-2217(00)00237-X
[35] Kuosmanen, T., Post, T., Measuring economic efficiency with incomplete price information: With an application to European commercial banks, European journal of operational research, 2001, 134(1), P.43-58.
[36] Lee, Y.K., Park, K.S., Identification of inefficiencies in an additive model based IDEA, Computers and Operations Research, 2002, 29, P.1661-1676. Doi: 10.1016/S0305-0548(01)00049-1
[37] Maniadakis, N., Thanassoulis, E., A cost Malmquist productivity index, European Journal of Operational Research, 2004, 154(2), P.396-409. Doi: 10.1016/S0377-2217(03)00177-2
[38] Mirdehghan, S. M., Vakili, J., Relations Among Technical, Cost and Revenue Efficiencies in Data Envelopment Analysis, International Journal of Applied Mathematics, 2015, 45(4), P. 1-10.
[39] Izadikhah, M., Farzipoor Saen, R. Solving voting system by data envelopment analysis for assessing sustainability of suppliers. Group Decis Negot, 2019, 28, P. 641–669. Doi: 10.1007/s10726-019-09616-7
[40] Izadikhah, M., Azadi, M., Toloo, M., Hussain, F.K., Sustainably resilient supply chains evaluation in public transport: A fuzzy chance-constrained two-stage DEA approach, Applied Soft Computing, 2021, 113(B), Doi: 10.1016/j.asoc.2021.107879.
[41] Poordavoodi, A., Reza, M., Haj, H., Rahmani, A. M., Izadikhah, M., Toward a More Accurate Web Service Selection Using Modified Interval DEA Models with Undesirable Outputs. CMES-Computer Modeling in Engineering & Sciences, 2020, 123(2), P. 525–570. Doi: 10.32604/cmes.2020.08854
[42] Azadi, M., Izadikhah, M., Ramezani, F., Hussain, F.K., A mixed ideal and anti-ideal DEA model: an application to evaluate cloud service providers, IMA Journal of Management Mathematics, 2000, 31(20), P. 233–256, Doi: 10.1093/imaman/dpz012
[43] Izadikhah, M., A Fuzzy Goal Programming Based Procedure for Machine Tool Selection, 2015, 28(1), P. 361-372, Doi: 10.3233/IFS-141311
[44] Izadikhah, M. Financial Assessment of Banks and Financial Institutes in Stock Exchange by Means of an Enhanced Two stage DEA Model. Advances in Mathematical Finance and Applications, 2021, 6(2), P. 207-232. Doi: 10.22034/amfa.2020.1910507.1491
[45] Mostafaee, A., Saljooghi, F. H., Cost efficiency measures in data envelopment analysis with data uncertainty. European journal of operational research, 2010, 202(2), P.595-603. Doi: 10.1016/j.ejor.2009.06.007
[46] Park, K.S., Efficiency bounds and efficiency classifications in DEA with imprecise data, Journal of the Operational Research Society, 2007, 58, P.533-540. Doi: 10.1057/palgrave.jors.2602178
[47] Park, K.S. Duality, efficiency computations and interpretations in imprecise DEA, European Journal of Operational Research, 2010, 200, P.289-296. Doi: 10.1016/j.ejor.2008.11.028
[43] Sahoo, B. K., Kerstens, K., & Tone, K. Returns to growth in a nonparametric DEA approach. International Transactions in Operational Research, 2012, 19(3), P.463-486. Doi: 10.1111/j.1475-3995.2012.00841.x
[45] Seiford, L. M., & Zhu, J. Sensitivity analysis of DEA models for simultaneous changes in all the data. Journal of the Operational Research Society, 1998, 49(10), P.1060-1071. Doi: 10.1057/palgrave.jors.2600620
[44] Sengupta, J. K., & Sahoo, B. Efficiency models in data envelopment analysis: Techniques of evaluation of productivity of firms in a growing economy. Springer, 2006.
[45] Seyed Esmaeili, F. S., Rostamy-Malkhalifeh, M., & Hosseinzadeh Lotfi, F. Two-Stage Network DEA Model Under Interval Data. Mathematical Analysis and Convex Optimization, 2020, 1(2), P.101-106. Doi: 10.29252/maco.1.2.10
[46] Sharma, M., & Mehra, A. Departmental Efficiency of Panjab University: An Analysis Using Dea and Tobit Model. Economic Affairs, 2019, 64(4), P.769-781. Doi: 10.30954/0424-2513.4.2019.12
[47] Smirlis, Y.G., Maragos, E.K. and Despotis, D.K. Data envelopment analysis with missing values: an interval DEA approach, Applied Mathematics and Computation, 2006, 177(1), P. 1-10. Doi: 10.1016/j.amc.2005.10.028
[48] Soleimani-Chamkhorami, K., Hosseinzadeh Lotfi, F., Jahanshahloo, G., & Rostamy-Malkhalifeh, M. A ranking system based on inverse data envelopment analysis. IMA Journal of Management Mathematics, 2020, 31(3), P.367-385. Doi: 10.1093/imaman/dpz014
[49] Sueyoshi, T. Measuring efficiencies and returns to scale of Nippon Telegraph & Telephone in production and cost analyses. Management Science, 1997, 43(6), P.779-796. Doi: 10.1287/mnsc.43.6.779
[50] Sun, J., Miao, Y., Wu, J., Cui, L. and Zhong, R. Improved interval DEA models with common weight, Kybernetika, 2014, 50(5), P.774-785. Doi: 10.14736/kyb-2014-5-0774
[51] Tohidnia, S., Tohidi, G., Estimating multi-period global cost efficiency and productivity change of systems with network structures, Journal of Industrial Engineering International, 2019, 15(1), P.171-179. Doi: 10.1007/s40092-018-0254-x
[52] Toloo, M., Aghayi, N., and Rostamy-malkhalifeh, M., Measuring overall profit efficiency with interval data, Applied Mathematics and Computation, 2008, 201, P.640–649. Doi: 10.1016/j.amc.2007.12.061
[53] Toloo, M., Keshavarz, E., Hatami-Marbini, A., Dual-role factors for imprecise data envelopment analysis Omega, 2018, 77, P.15-31. Doi: 10.1016/j.omega.2017.05.005
[54] Tone, K. A strange case of the cost and allocative efficiencies in DEA, Journal of the Operational Research Society, 2002, 53(11), P.1225-1231. Doi: 10.1057/palgrave.jors.2601438
[55] Tone, K., Sahoo, B. K., Evaluating cost efficiency and returns to scale in the Life Insurance Corporation of India using data envelopment analysis, Socio-Economic Planning Sciences, 2005, 39(4), P.261-285.
[56] Tone, K., Sahoo, B. K., Re-examining scale elasticity in DEA, Annals of Operations Research, 2006, 145(1), P.69-87. Doi: 10.1007/s10479-006-0027-6
[57] Wang, Y.M., Greatbanks, R. and Yang, J.B., Interval efficiency assessment using data envelopment analysis, Fuzzy Sets and Systems, 2015, 153, P.347-370. Doi: 10.1016/j.fss.2004.12.011
[58] Yang, L. H., Liu, J., Wang, Y. M., Martínez, L., New activation weight calculation and parameter optimization for extended belief rule-based system based on sensitivity analysis, Knowledge and Information Systems, 2019, 60(2), P.837-878. Doi: 10.1007/s10115-018-1211-0
[59] Zhu, J., Imprecise data envelopment analysis (IDEA): a review and improvement with an application, European Journal of Operational Research, 2003, 144, P.513-529. Doi: 10.1016/S0377-2217(01)00392-7