Capsule Network Regression Using Information Measures: An Application in Bitcoin Market
Subject Areas : Financial EconomicsMahsa Tavakoli 1 , Hassan Doosti 2 , Christophe Chesneau 3
1 - Independent Researcher, Mashhad, Iran
2 - macquarie university
3 - Université de Caen-LMNO, Caen, France
Keywords:
Abstract :
[1] Kumar, D., Meghwani, S.S., Thakur, M., Proximal support vector machine based hybrid prediction models for trend forecasting in financial markets, Journal of Computational Science, 2016, 17, P.1-13.
Doi: 10.1016/j.jocs.2016.07.006.
[2] Podsiadlo, M., Rybinski, M., Financial time series forecasting using rough sets with time-weighted rule voting, Expert Systems with Applications, 2016, 66, P.219-233.
[3] Chen, Y., and Hao, Y., A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction, Expert Systems with Applications, 2017, 80, P. 340-355.
Doi: 10.1016/j.eswa.2017.02.044.
[4] Zhong, X., D. Enke, Forecasting daily stock market return using dimensionality reduction. Expert Systems with Applications, 2017,67,P. 126-139, Doi: 10.1016/j.eswa.2016.09.027.
[5] Cavalcante, R.C., Brasileiro, R. C., Souza, V. L.F., Nobrega, J.P., Oliveira, A. L.I., Computational intelligence and financial markets: A survey and future directions, Expert Systems with Applications, 2016, 55, P.194-211, Doi: 10.1016/j.eswa.2016.02.006.
[6] Pan, Y., Xiao, Z., Wang, X., Yang, D., A multiple support vector machine approach to stock index forecasting with mixed frequency sampling, Knowledge-Based Systems, 2017, 122, P.90-102.
Doi: 10.1016/j.knosys.2017.01.033.
[7] Zhang, N., Lin, A., Shang, P., Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting, Physica A: Statistical Mechanics and its Applications, 2017, 477, P. 161-173.
Doi: 10.1016/j.physa.2017.02.072.
[8] Le, H.H., Viviani, J., Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios, Research in International Business and Finance, 2018, 44, P.16-25.
[9] Lv, D., Huang, Z., Li, M., Xiang, Y., Selection of the optimal trading model for stock investment in different industries, PloS one, 2019, 14(2), P.e0212137. Doi: 10.1371/journal.pone.0212137.
[10] Chen, Z., Li, C., Sun, W., Bitcoin price prediction using machine learning: An approach to sample dimension engineering, Journal of Computational and Applied Mathematics, 2020, 365, P.112395.
[11] Olivas, E.S., Guerrero, J.D.M., Sober , M. M., Benedito , J, R, M., Lopez, A, J, S., Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. 2009: IGI Global.
[12] McNally, S., Roche, J., Caton. S., Predicting the price of bitcoin using machine learning, 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing, 2018.
[13] Saad, M., M. Saad, J. Choi, D. Nyang, J. Kim and A. Mohaisen,., Toward characterizing blockchain-based cryptocurrencies for highly accurate predictions, IEEE Systems Journal, 2019, 14(1), P.321-332.
Doi: 10.1109/JSYST.2019.2927707.
[14] Jang, H. and J. Lee, An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks based on blockchain information, IEEE Access, 2017,6, P.5427-5437.
Doi: 10.1109/ACCESS.2017.2779181.
[15] Rebane, J., Isak, K., Papapetrou, P., Seq2seq rnns and arima models for cryptocurrency prediction: A comparative study, SIGKDD Fintech, 2018,18,P. 2-6. Doi: 10.475/123_4.
[16] Shintate, T., Pichl, L., Trend prediction classification for high frequency bitcoin time series with deep learning, Journal of Risk and Financial Management, 2019,12(1),P.17. Doi: 10.3390/jrfm12010017.
[17] Davoodi Kasbi, A., Dadashi, I., Stock price prediction using the Chaid rule-based algorithm and particle swarm optimization (pso), Advances in Mathematical Finance and Applications, 2020,5(2),P.197-213.
Doi: 10.22034/amfa.2019.585043.1184.
[18] Ghasemzadeha, M., Mohammad-Karimi, N., Ansari-Samani, H., Machine learning algorithms for time series in financial markets, Advances in Mathematical Finance and Applications, 2020,5(4), P.479-490.
[19] Hsu, M.-W., Lessmann, S., Sung, M.C., Ma, T., Johnson, J. E.V., Bridging the divide in financial market forecasting: machine learners vs. financial economists, Expert Systems with Applications, 2016,61,P.215-234. Doi: 10.1016/j.eswa.2016.05.033.
[20] Patel, J., Shah, S.,Thakkar, P.,Kotecha, K., Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques, Expert systems with applications, 2015,42(1),P.259-268.
Doi: 10.1016/j.eswa.2014.07.040.
[21] Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., Soman, K. P., Stock price prediction using LSTM, RNN and CNN-sliding window model, International conference on advances in computing, communications and informatics, 2017.
[22] Sachdeva, A., Jethwani, G., Manjunath, C., Balamurugan, M., Krishna, A.V.N., An Effective Time Series Analysis for Equity Market Prediction Using Deep Learning Model, International Conference on Data Science and Communication (IconDSC), 2019.
Doi: 10.1109/IconDSC.2019.8817035.
[23] Liu, J., Lin, H., Liu, X., Xu, B., Ren, Y., Diao, Y., Yang, L., Transformer-based capsule network for stock movement prediction. in Proceedings of the First Workshop on Financial Technology and Natural Language Processing. 2019.
[24] Goodfellow, I., et al., Deep learning. Vol. 1. 2016,MIT press Cambridge.
[25] Fischer, T., C. Krauss, and A. Treichel, Machine learning for time series forecasting-a simulation study. 2018, FAU Discussion Papers in Economics.
[26] Korczak, J., Hemes. M., Deep learning for financial time series forecasting in A-Trader system. Federated Conference on Computer Science and Information Systems (FedCSIS). 2017.
[27] Zhou, X., Pan, Z., Hu, G., Tang, S., and Zhao, C., Stock market prediction on high-frequency data using generative adversarial nets, Mathematical Problems in Engineering, 2018,(1),P.1-11, Doi: 10.1155/2018/4907423.
[28] Fischer, T., Krauss, C., Deep learning with long short-term memory networks for financial market predictions, European Journal of Operational Research, 2018,270(2),P. 654-669, Doi:10.1016/j.ejor.2017.11.054.
[29] Gonçalves, R., Ribeiro, V. M., Pereira, F. L.,and Rocha, A. P., Deep learning in exchange markets. Information Economics and Policy, 2019. 47, P.38-51, Doi: 10.1016/j.infoecopol.2019.05.002.
[30] Tavakoli, M., Doosti, H., Forecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function. Advances in Mathematical Finance and Applications, 2021,6(2),P.1-24.
Doi: 10.22034/amfa.2020.1896273.1399.
[31] Long, J., et al., An integrated framework of deep learning and knowledge graph for prediction of stock price trend: An application in Chinese stock exchange market, Applied Soft Computing, 2020,P.106205.
Doi: 10.1016/j.asoc.2020.106205.
[32] Kelotra, A., Pandey, P., Stock market prediction using optimized deep-convlstm model. Big Data, 2020, 8(1),P.5-24. Doi: 10.1089/big.2018.0143.
[33] Bouktif, S., Fiaz, A., Awad, M., Augmented Textual Features-Based Stock Market Prediction, IEEE, 2020,8, P.40269-40282. Doi: 10.1109/ACCESS.2020.2976725.
[34] Chung, H., Shin, K., Genetic algorithm-optimized multi-channel convolutional neural network for stock market prediction, Neural Computing and Applications, 2020, 32(12), P.7897-7914. Doi: 10.1007/s00521-019-04236-3.
[35] Cervelló-Royo, R., Guijarro, F., Forecasting stock market trend: A comparison of machine learning algorithms, Finance, Markets and Valuation, 2020, 6(1), P.37-49.
[36] De Souza, M.J.S., Almudhaf, F.W., Henriqu, B,M., Negredo, A,B,S., Ramos, D,G,F., Sobreiro, V. A., Kimura, H., Can artificial intelligence enhance the Bitcoin bonanza, The Journal of Finance and Data Science, 2019, 5(2), P.83-98. Doi: 10.1016/j.jfds.2019.01.002.
[37] Ji, S., Kim, J., Im, H., A comparative study of Bitcoin price prediction using deep learning, Mathematics, 2019, 7(10), P.898. Doi: 10.3390/math7100898.
[38] Huisu, J., Predicting bitcoin prices by using rolling window LSTM model, Data Science in FinTech (DSF), 2018.
[39] Kim, Y.B., Kim, J.G., Kim, W., Im, J, H., Kim, T.H., Kang, Sh.J., Chang Hun Kim., Predicting fluctuations in cryptocurrency transactions based on user comments and replies, PloS one, 2016, 11(8), P.e0161197.
Doi: 10.1371/journal.pone.0161197.
[40] Li, T.R., T.R., Li, Chamrajnagar, A.S., Fong, X.R., Rizik, N. R., Fu. F.,, Sentiment-based prediction of alternative cryptocurrency price fluctuations using gradient boosting tree model, Frontiers in Physics, 2019, 7, P.98. Doi: 10.3389/fphy.2019.00098.
[41] Banerjee, A., Merugu, S., Dhillon, I. S., Ghosh, J., Clustering with Bregman divergences, Journal of machine learning research, 2005, 6(Oct), P.1705-1749. Doi: 10.1137/1.9781611972740.22.
[42] Villmann, T., Haase, S., Mathematical aspects of divergence based vector quantization using Fréchet-derivatives, University of Applied Sciences Mittweida, 2010.
[43] Villmann, T., Haase, S., Schleif, F.M., Hammer, B., Divergence based online learning in vector quantization, International Conference on Artificial Intelligence and Soft Computing, 2010, Springer.
[44] Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., Amari, Sh,-i.,Novel multi-layer non-negative tensor factorization with sparsity constraints, International Conference on Adaptive and Natural Computing Algorithms, 2007, Springer.
[45] Sabour, S., Frosst, N., Hinton. G.E., Dynamic routing between capsules, Advances in neural information processing systems, 2017.
[46] Gandhmal, D.P., Kumar, K., Systematic analysis and review of stock market prediction techniques, Computer Science Review, 2019, 34, P.100190. Doi: 10.1016/j.cosrev.2019.08.001.
[47] Tilouche, S., Nia, V.P., Bassetto, S., Parallel coordinate order for high-dimensional data, arXiv preprint arXiv,1905.10035, 2019.
[48] Tavakoli, M., Alizadeh Noughabi, H., Mohtashami, G.R., An estimation of Phi divergence and its application in testing normality, Hacettepe Journal of Mathematics and Statistics, 2021, 6(2), P.195-205.
Doi: 10.15672/hujms.629192.
[49] Powers, D.M., Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.