Financial Distress of Companies Listed on the Tehran Stock Exchange using the Dynamic Worst Practice Frontier-based DEA Model
Subject Areas : Financial and Economic ModellingHamid Rahimi 1 , Mehrzad Minouei 2 , MohammadReza Fathi 3
1 - Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 - Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3 - Faculty of Management and Accounting, College of Farabi, University of Tehran, Qom, Iran
Keywords:
Abstract :
References
[1] Altman, E., Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy, The journal of finance, 1968, 4(23), P.589-609. Doi: 10.2307/2978933.
[2] Badami, M.h., Predicting corporate financial distress using the ELECTRE TRI method in Tehran Stock Exchange, The University of Tehran, Faculty of Management, Tehran, M.Sc. Thesis, 2014, P.65-66. (in Persian)
[3] Banker, R. D., Charnes, A., Cooper, W. W., Some models for estimating technical and scale inefficiencies in data envelopment analysis, Management Science, 1984, 30(9), P. 1078-1092.
Doi: 10.1287/mnsc.30.9.1078.
[4] Charnes, A., Cooper, W. W., Rhodes, E., Measuring the efficiency of decision-making units, European journal of operational research, 1978, 2(6), P. 429-444. Doi: 10.1016/0377-2217(78)90138-8.
[5] Charnes, A., Cooper, W. W., Golany, B., Seiford, L., Stutz, J., Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions, Journal of econometrics, 1985, 30(1), P. 91-107.
[6] Chen, C., Van Dalen, H., Measuring dynamic efficiency: Theories and an integrated methodology, European Journal of Operational Research, 2010, 3(203), P.749-760. Doi: 10.1016/j.ejor.2009.09.001.
[7] Chen, J., Developing SFNN models to predict financial distress of construction companies, Expert Systems with Applications, 2012, 1(39), P. 823-827. Doi: 10.1016/j.eswa.2011.07.080.
[8] Chen, Y., Liang, L., Zhu, J. Equivalence in two-stage DEA approaches, European Journal of Operational Research, 2009, 2(193), P.600-614. Doi: 10.1016/j.ejor.2007.11.040.
[9] Cooper, W. W., Park, K. S., Pastor, RAM, J. T., a range adjusted measure of inefficiency for use with additive models and relations to other models and measures in DEA. Journal of Productivity Analysis, 1999, 11(1), P. 5-42. Doi:10.1023/A:1007701304281.
[10] Cooper, W., Seiford, L., Toone, K., Introduction to data envelopment analysis and its uses: with DEA-solver software and references, Springer Science and Business Media, 2006, 5(2), P. 125-139.
[11] Deprins, D., Simar, L., Measuring Labor Efficiency in Post Offices, In Marchand M., P. Pestieau and H. Tulkens (eds.), The Performance of Public Enterprises: Concepts and Measurements, 1984. Doi: 10.1007/978-0-387-25534-7_16.
[12] Ebrahimi Kordlar, J., Jafarzadeh, A., Aliahmadi, MH., Proposing a Model of Efficiency Evaluation Based on the Adjusted Range Measurement Model and Weight Restrictions (Case Study: Branches of Iran Insurance Company), Industrial Management Journal, 2018, 10(2), P. 161-182 (in Persian).
[13] Fallahpour, S., Eram, A. Predicting Companies Financial Distress by Using Ant Colony Algorithm, Financial Research Journal, Tehran: The University of Tehran, Faculty of Management, 2016, 2(18), P. 347-368 (in Persian).
[14] Färe R, Lovell CAK. Measuring the technical efficiency of production, J Econ Theory 19, 1978, P.150–162.
[15] Farrell, M. J., The measurement of productive efficiency, Journal of the Royal Statistical Society Series A (General), 1957, 120, P. 253–290. Doi: 10.2307/3439197.
[16] Gordon, M. J. Towards a theory of financial distress. The Journal of Finance, 1971, 26(2), P. 347-356.
Doi: https://doi.org/10.2307/2326050.
[17] Heydary Farahany, M., ghayour, F., mansourfar, G., The effect of management behavioral strains on financial distress, Journal of Financial Accounting Research, 2019, 3(11), P. 117-134.
Doi: 10.22108/FAR.2020.119602.1534.
[18] Izadikhah, M., Financial Assessment of Banks and Financial Institutes in Stock Exchange by Means of an Enhanced Two stage DEA Model, Advances in Mathematical Finance and Applications, 2021, 6(2), P.1-30. Doi: 10.22034/amfa.2020.1896273.1399.
[19] Jebelli, N., Dadashi, I., Zare Bahnamiri, MJ., Presenting a New Bankruptcy Prediction Model Based on Adjusted Financial Ratios According to the General Price Index, Advances in Mathematical Finance and Applications, 2020, Doi: 10.22034/AMFA.2020.1884838.1339.
[20] Khajavi, S., Ghadirian-Arani, M., The role of managerial ability in financial distress prediction, Journal of Financial Accounting Research, 2019, 9(4), P.83-102. Doi: 10.22108/far.2018.107709.1172.
[21] Li, Z., Crook, J., Andreeva, G., Dynamic prediction of financial distress using Malmquist DEA, Expert Systems with Applications, 2017, 6(80), P.9. Doi: 10.1016/j.eswa.2017.03.017.
[22] Liu, F. H. F., Chen, C. L., The worst-practice DEA model with slack-based measurement. Computers and Industrial Engineering, 2009, 57(2), P.496-505. Doi: 10.1016/j.cie.2007.12.021.
[23] Mehrani, S., Mehrani, K., Monsefi, Y., Karami, Gh., A Practical Study of Zmijewski and Shirata Bankruptcy Prediction Models in Companies Listed on the Tehran Stock Exchange, Journal of Accounting and Auditing Reviews, 2005, 5, P. 105-131. (in Persian). Doi: 10.1016/j.ribaf.2016.02.001.
[24] Mehregan, MR., Safari, H., Jafarzadeh, AH., Efficiency evaluation of Iran Insurance Company using Data Envelopment Analysis, Financial Research Journal, 2016, 17(2), P.393-414. (in Persian).
Doi: 10.22059/JFR.2015.57318.
[25] Megginson, W., Meles, A., Sampagnaro, G., Verdoliva, V., Financial distress risk in initial public offerings: how much do venture capitalists matter?, Journal of Corporate Finance, 2019, 25(1), P.10-30.
[26] Mirarab BAagi, S.A., Mokari, H., Azariyon, A., Dynamic forecasting of financial bankruptcy using the Malm Quest method (Case Study: companies listed on the Tehran Stock Exchange), Karafan.2020, 17, P. 203-220. (In Persian).
[27] Moradi, M., Shafiei Sardasht, M., Ebrahimpour, M. Financial distress prediction using support vector machine models and multiple discriminate analysis. Quarterly Journal Stock Exchange, 2012, 18(5), P. 113-136. (in Persian). Doi: 10.22059/JFR.2016.61596.
[28] Mousavi, M., Ouenniche, J., Tone, K. A comparative analysis of two-stage distress prediction, Expert Systems with Applications, 2019, 119, P. 322-341. Doi: 10.1016/j.eswa.2018.10.053.
[29] Osama, E. A., Bassam, L., Predicting Financial Distress for Listed MENA Firms, International Journal of Accounting and Financial Reporting, 2019, 2(9), P. 51-75. Doi: 10.5296/ijafr.v9i2.14542.
[30] Paradi, Joseph C., Mette Asmild, and Paul C., Simak., Using DEA and worst practice DEA in credit risk evaluation, Journal of Productivity Analysis, 2004, 21(2), P. 153-165.
[31] Parkan, C., Wang, Y.M., Worst Efficiency Analysis Based on Inefficient Production Frontier, Information Sciences, 2000, 175, P. 20-29.
[32] Raei. R., Fallahpour, S., Corporate financial distress prediction using artificial neural networks, Journal of Financial Research. 2004, 17, P. 39-69. (in Persian)
[33] Raei R., Fallahpour, S. Support Vector Machines Application in Financial Distress Prediction of Companies Using Financial Ratios, Accounting and Auditing Review, 2008, 4(15), P. 17-34 (in Persian).
[34] Rahimi, H., Minouei, M., Fathi, M.R., Explaining the effective financial variables in predicting financial distress: the use of artificial neural network, Iranian Rubber Industry, 2021, 25(101), P. 65-84. (In Persian).
[35] Rahimi, H., Minouei, M., Fathi, M.R., Forecasting the financial distress of companies listed on the Tehran Stock Exchange using DEA-DA and artificial neural network, Karafan, Accepted. 2021, (In Persian).
[36] Ramezanzadeh Zeidi, A., Faghani Makarani, K., Jafari, A., The Role of Earnings Management in Theoretical Development and Improving the Efficiency of Accounting-Based Financial Distress Prediction Models, Advances in Mathematical Finance and Applications, 2021 Jul 1, 6(3), P.1-8. Doi: 10.22034/AMFA.2019.1879394.1300.
[37] Tone, K., A slacks-based measure of efficiency in data envelopment analysis, European journal of operational research, 2001, 130(3), P.498-509. Doi: 10.1016/S0377-2217(99)00407-5.
[38] Tsai, C., Feature selection in bankruptcy prediction. Knowledge-Based Systems, 2009, 2(22), P. 120-127. Doi: 10.1016/j.knosys.2008.08.002.
[39] Vadiei, MH., Miresmaeili, SH., Bankruptcy Prediction Using Ohlson Logit Analysis Models and Fulmer Multiple Discriminant Analysis and Comparison, Journal of Accounting and Auditing Research, 2012, 2, P. 172-164. (in Persian)
[40] Xu, z., Wang., Financial failure prediction using efficiency as a predictor, Expert Systems with Applications, 2009, 2(22), P. 366-373. Doi: 10.1016/j.eswa.2007.09.040.