Hybrid Multilayer Perceptron Neural Network with Grey Wolf Optimization for Predicting Stock Market Index
Subject Areas : Financial MathematicsMeysam Doaei 1 , Seyed Ahmad Mirzaei 2 , Mohammad Rafigh 3
1 - Department of Management, Esfarayen Branch, Islamic Azad University, Esfarayen, Iran
2 - Faculty of Management and Accounting, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
3 - Department of Finance, Esfarayen Branch, Islamic Azad University, Esfarayen, Iran
Keywords:
Abstract :
[1] Alba, E., Chicano, J.F., Training neural networks with GA hybrid algorithms, In Genetic and Evolutionary Computation Conference, Springer, Berlin, Heidelberg, 2004, P.852-863. Doi: 10.1007/978-3-540-24854-5_87
[2] Aljarah, I., Faris, H., Mirjalili, S., Optimizing connection weights in neural networks using the whale optimization algorithm, Soft Computing, 2018, 22(1), P.1-5. Doi: 10.1007/s00500-016-2442-1
[3] Chen, J.F., Do, Q.H., Hsieh, H.N., Training artificial neural networks by a hybrid PSO-CS algorithm, Algorithms, 2015, 8(2), P.292-308. Doi: 10.3390/a8020292
[4] Dibachi, H., Behzadi, M.H., Izadikhah, M., Stochastic Modified MAJ Model for Measuring the Efficiency and Ranking of DMUs, Indian Journal of Science and Technology, 2015, 8(8), P. 1-7, Doi: 10.17485/ijst/2015/v8iS8/71505
[5] Eberhart, R., Kennedy, J., A new optimizer using particle swarm theory, InMHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, P.39-43.
[6] Ecer, F., Ardabili, S., Band, S.S., Mosavi, A., Training Multilayer Perceptron with Genetic Algorithms and Particle Swarm Optimization for Modeling Stock Price Index Prediction, Entropy, 2020, 22(11), P.1239.
Doi: 10.3390/e22111239
[7] Faris, H., Aljarah, I., Al-Madi, N., Mirjalili, S., Optimizing the learning process of feedforward neural networks using lightning search algorithm, International Journal on Artificial Intelligence Tools, 2016, 25(06), P.1650033. Doi: 10.1142/S0218213016500330
[8] Faris, H., Aljarah, I., Mirjalili, S., Training feedforward neural networks using multi-verse optimizer for binary classification problems, Applied Intelligence, 2016, 45(2), P.322-32. Doi: 10.1007/s10489-016-0767-1
[9] Ghasemiyeh, R., Moghdani, R., Sana, S.S., A hybrid artificial neural network with metaheuristic algorithms for predicting stock price, Cybernetics and Systems, 2017, 48(4), P.365-92.
[10] Ghasemzadeha, M., Mohammad-Karimi, N., Ansari-Samani, H., Machine learning algorithms for time series in financial markets, Advances in Mathematical Finance and Applications, 2020, 5(4), P.479-490.
Doi: 10.22034/amfa.2020.674946
[11] Hatamlou, A., Black hole: A new heuristic optimization approach for data clustering, Information sciences, 2013, 222, P.175-84. Doi: 10.1016/j.ins.2012.08.023
[12] Izadikhah, M., Azadi, M., Shokri Kahi, V., Farzipoor Saen, R., Developing a new chance constrained NDEA model to measure the performance of humanitarian supply chains, International Journal of Production Research, 2019, 57(3), P. 662-682, Doi: 10.1080/00207543.2018.1480840
[13] Heidari, A.A., Faris, H., Aljarah, I., Mirjalili, S., An efficient hybrid multilayer perceptron neural network with grasshopper optimization, Soft Computing, 2019, 23(17), P.7941-58.
Doi: 10.1007/s00500-018-3424-2
[14] Heidari, A.A., Faris, H., Mirjalili, S., Aljarah, I., Mafarja, M., Ant lion optimizer: theory, literature review, and application in multi-layer perceptron neural networks, Nature-Inspired Optimizers, 2020, P.23-46.
Doi: 10.1007/978-3-030-12127-3_3
[15] Holland, J. H, Adaptation in natural and artificial systems, University of Michigan press. Ann arbor, MI, 1975, 1(97), 5.
[16] Izadikhah, M., Using goal programming method to solve DEA problems with value judgments, Yugoslav Journal of Operations Research, 2016, 24 (2), P. 267–282. Doi: 10.2298/YJOR121221015I
[17] Khodayari, M.A., Yaghobnezhad, A., Khalili Eraghi, K. E., A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment, Advances in Mathematical Finance and Applications, 2020, 5(4), P.569-581. Doi: 10.22034/amfa.2020.674953
[18] Kumar, G., Jain, S., Singh, U.P., Stock Market Forecasting Using Computational Intelligence: A Survey, Archives of Computational Methods in Engineering, 2020, P.1-33. Doi: 10.1007/s11831-020-09413-5
[19] Mirjalili, S., Mirjalili, S.M., Lewis, A., Grey wolf optimizer, Advances in engineering software, 2014, 69, P.46-61. Doi: 10.1016/j.advengsoft.2013.12.007
[19] Murphy, J.J., Technical analysis of the financial markets: A comprehensive guide to trading methods and applications, Penguin, 1999.
[20] Ojha, V.K., Abraham, A., Snášel, V., Metaheuristic design of feedforward neural networks: A review of two decades of research, Engineering Applications of Artificial Intelligence, 2017, 60, P.97-116.
[20] Pillay, B.J., Ezugwu, A.E., Metaheuristics optimized feedforward neural networks for efficient stock price prediction, arXiv preprint arXiv, 2019, 1906.10121.
[21] Rezaei, N., Javaheri, M., The Predictability Power of Neural Network and Genetic Algorithm from Firms’ Financial crisis, Advances in Mathematical Finance and Applications, 2020, 5(2), P.1-17.
Doi: 10.22034/amfa.2019.1863963.1195
[22] Saremi, S., Mirjalili, S., Lewis, A., Grasshopper optimisation algorithm: theory and application, Advances in Engineering Software, 2017,105, P.30-47. Doi: 10.1016/j.advengsoft.2017.01.004
[23] Tone, K., Toloo, M., Izadikhah, M., A modified slacks-based measure of efficiency in data envelopment analysis, European Journal of Operational Research, 2020, 287 (2), P. 560-571, Doi: 10.1016/j.ejor.2020.04.019.
[24] Thakkar, A., Chaudhari, K., A Comprehensive Survey on Portfolio Optimization, Stock Price and Trend Prediction Using Particle Swarm Optimization, Archives of Computational Methods in Engineering, 2020, P.1-32. Doi: 10.1007/s11831-020-09448-8