Measurement of Bitcoin Daily and Monthly Price Prediction Error Using Grey Model, Back Propagation Artificial Neural Network and Integrated model of Grey Neural Network
Subject Areas : Numerical Methods in Mathematical FinanceMahdi Madanchi Zaj 1 , Mohammad Ebrahim Samavi 2 , Emad Koosha 3
1 - Department of Financial Management, Electronic Campus, Islamic Azad University Tehran, Iran
2 - Department of Finance, College of Management and Economics, Financial Engineering, Science and Research Branch,
Islamic Azad University, Tehran, Iran.
3 - Department of Finance, Financial Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Keywords:
Abstract :
[1] Alijani, M., Banimahi, B., Madanchi Zaj, M., Study and Research on the Six-Year Process of Bitcoin Price and Return, Advances in mathematical finance and applications, 2019, 4(1), P.45-54. Doi: 10.22034/AMFA.2019.577434.1126
[2] Da Silva Filho, AC, Diniz Maganini, N., de Almeida, E.F., Multifractal analysis of Bitcoin market, 2018, Physica conference, Doi: 10.1016/j.physa.2018.08.076
[3] Atsalakis, G.S., Valavanis, K.P., Surveying stock market forecasting techniques – Part II: Soft computing methods. Expert Systems with Applications, 2009, 36(3), P. 5932-5941. Doi: 10.1016/j.eswa.2009.02.043
[4] Balcilar, M., Bouri, E., Gupta, R., Roubaud, D., Can Volume Predict Bitcoin Returns and Volatility? A Quantiles-Based Approach. Economic Modelling, 2017, 64(2), P. 74-81, Doi: 10.1016/j.econmod.2017.03.019
[5] Baur, D.G., Hong, K., Lee, A.D., Bitcoin: Medium of exchange or speculative assets? Journal of International Financial Markets, Institutions and Money, 2018, 54, P. 177-189. Doi: 10.1016/j.intfin.2017.12.004
[6] Bouri, E. Jalkh, N., Molnár P., Roubaud D, Bitcoin for energy commodities before and after the December 2013 crash: diversifier, hedge or safe haven? Applied Economics, 2017, 49, P.5063-5073.Doi: 10.1080/00036846.2017.1299102
[7] Bouri, E., Gupta, R., Tiwari, A.K., Doubaud, D, Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions, Finance Research Letters, 2017, 23, P. 87-95.Doi: 10.1016/j.frl.2017.02.009
[8] Bouri, E., Molnár, P., Azzi, G., Roubaud, D., Hagfors, L.I, On the hedge and safe haven properties of Bitcoin: is it really more than a diversifier, Finance Research Letters, 2017, 20, P.192–198. Doi: 10.1016/j.frl.2016.09.025
[9] Bradbury, D, The problem with Bitcoin. Computer Fraud & Security, 2013, 11, P. 15–38.Doi: 10.1016/S1361-3723(13)70101-5
[10] Cheah, E. T., Fry, J, Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics Letters, 2015,130, P. 32-36. Doi: 10.1016/j.econlet.2015.02.029
[11] Chen, S-J., Huang, C-I, The Necessary and Sufficient condition for GM (1,1) Grey prediction Model, Applied Mathematics and Computation, 2013, 219(11), P. 6152-6162. Doi: 0.1016/j.amc.2012.12.015
[12] Burniske, C., Tatar, J., Crypto Assets: the innovative investor's guide to Bitcoin and beyond, McGraw-Hill Education, 2017, ISBN-13: 978-1260026672.
[13] Chuen, D. L. K., Handbook of digital currency: Bitcoin, innovation, financial instruments, and big data, Academic Press, 2015, 2(1), P. 112-131.
[14] Dash, R., Dash, P.K., A hybrid stock trading framework integrating technical analysis with machine learning techniques, The Journal of Finance and Data Science (JFDS), 2016, 2, P.42-57. Doi:10.1016/j.jfds.2016.03.002
[15] Vidal-Tomas, D., Ibanez, A., Semi-strong efficiency of Bitcoin, Finance Research Letters, 2018, 14, P. 32-45. Doi: 10.1016/j.frl.2018.03.013
[16] De La Horra, G., de la Fuente and J. Perote, the drivers of Bitcoin demand: A short and long-run analysis, International Review of Financial Analysis, 2019, 62, P. 21-34. Doi:10.1016/j.irfa.2019.01.006
[17] Demir, E., Gozgor, G., Lau, C.K.M., Vigne, S.A., Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation. Finance Research, Letters, 2018, 26, P.145-149.Doi: 10.1016/j.frl.2018.01.005
[18] Julong, D., Introduction to Grey System Theory. The Journal of Grey system,1989, 1(3), P.1 -24.
[19] Dyhrberg A.H., Foley S., Svec J., How investible is Bitcoin? Analyzing the liquidity and transaction costs of Bitcoin markets, Economics Letters, 2018, 32, P. 123-151. Doi:10.1016/j.econlet.2018.07.032
[20] Elwell, C. K., Murphy, M. M., and Seitzinger, M. V., Bitcoin: Questions, Answers, and Analysis of Legal Issues, US Congressional Research Service, Washington, 20 December 2013.
[21] European Central Bank, Virtual currency schemes–a further analysis, European Central Bank, 2015, retrieved from: https://www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemesen.pdf
[22] European Central Bank, Virtual Currency Schemes. Technical Report, October, 2012. Available at https://www.ecb.europa.eu/pub/pdf/other/ virtualcurrencyschemes201210en.pdf
[23] Atsalakis, G.S., Atsalaki, I.G., Pasiouras, F., Zopounidis, C., Bitcoin price forecasting with neuro-fuzzy techniques, European Journal of Operational Research, 2019, 276(2), P.770-780. Doi:10.1016/j.ejor.2019.01.040
[24] Georgoula, I., Pournarakis, D., Bilanakos, C., Sotiropoulos, D., Giaglis G., Using Time-Series and Sentiment Analysis to Detect the Determinants of Bitcoin Prices, 2015, 25(2), P.110-122. Doi: 10.2139/ssrn.2607167
[25] Glaser, F., Bitcoin-asset or currency? revealing users' hidden intentions, ECIS, 2014, 12(3), P.127-141. Available in: ssrn.com/abstract=2425247
[26] Guo, J., Chow, A., Virtual money systems: a phenomenal analysis, Paper presented at the 10th IEEE Conference,2008. Doi:10.1109/CECandEEE.2008.91
[27] Guresen, E., Kayakutlu, G., Daim, T. U., Using artificial neural network models in stock market index prediction Expert Systems with Applications, 2001, 38(8), P.10389–10397. Doi: 10.1016/j.eswa.2011.02.068
[28] Halaburda, H., Sarvary, M., Beyond Bitcoin, The Economics of Digital Currencies, 2016. ISBN 978-1-137-50642-9
[29] Harvey, C.R., Travers, K.E., Costa, M.J, forecasting emerging markets returns using neural networks. Emerging Markets Quarterly, 2000, 4, P. 43–54. ssrn.com/abstract=2214219
[30] Hatefi Majoomard, M, Jalali, U, Rahimi Ghasem Abadi, M, Spectacular Bubbles in the Bitcoin Digital Currency Market, Quarterly Journal of Financial Knowledge of Securities Analysis, 2018, 40(3), P. 189-204. (In Persian). Available at: jfksa.srbiau.ac.ir/article_13614.html
[31] He, D., Habermeier, K. F., Leckow, R. B., Haksar, V., Almeida, Y., Kashima, M., Yepes, C. V., Virtual Currencies and Beyond: Initial Considerations (No. 16/3). International Monetary Fund, 2016. ISBN/ISSN:9781498363273
[32] Islamic Republic of Iran Central Bank, The Document of Rules and Regulations of Cryptocurrencies, 2019, Issues 01.
[33] Wang, J.S., Ning, C-X., Cui, W-H., Time Series Prediction of Bank Cash Flow Based on Grey Neural Network Algorithm. International Conference on Estimation, Detection and Information Fusion, 2015, 12(1), P. 27- 39. Doi:10.1109/ICEDIF.2015.7280205
[34] Su, J., Zhou, J., The Use of Grey Verhulst Model in the Prediction of Operating Activities Cash Flow. Fourth International Conference on Business Intelligence and Financial Engineering, 2011, 14, P. 19-32.Doi: 10.1109/BIFE.2011.147
[35] Madan, I., Saluja, S., Zhao, A., Automated Bitcoin trading via machine learning algorithms, 2018, 5(1), P.16-32. Doi: 10.1155/2018/8983590
[36] Malek, A.M., Dabaghi, A., Fundamentals of the Theory of Grey Systems, Terhmeh Publications, 2011, (in Persian).
[37] Nadarajah, S., Chu, J., On the inefficiency of Bitcoin, Economics Letters, Elsevier, 2017, 150(3), P. 6-19.Doi: 10.1016/j.econlet.2016.09.019
[38] Xie, N-M., Liu, S-F., Discrete grey forecasting model and its optimization, Applied Mathematical Modelling, 2009, 33, P.1173–1186. Doi: 10.1016/j.apm.2008.01.011
[39] Nakamoto, S., Bitcoin: A Peer-to-Peer Electronic Cash System, Bitcoin.org, 2008, Available via: http://Bitcoin.org/Bitcoin.pdf.
[40] Nasr, N., Farhadi Sartangi, M., Madahi, Z., A Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index, 2019, 4(1), P. 15-30. Doi: 10.22034/AMFA.2019.583911.1172
[41] Polasik, M., Piotrowska, A.I., Wisniewski, T.P., Kotkowski, R., Lightfoot, G., Price Fluctuations and the Use of Bitcoin: An Empirical Inquiry. International Journal Electronic Commerce, 2015, 20, P.9-49.Doi: 10.2139/ssrn.2516754
[42] Rogojanu, A., Badea, L., the issue of" true" money in front of the Bitcoin's offensive, Theoretical and Applied Economics, 2015, 22(2), P.77-90. Doi: ideas.repec.org/a/agr/journl/vxxiiy2015i2(603). p77-90.html
[43] Seyyed Hosseimi, M., Doayi, M., Bitcoin, The First Cryptocurrency, Bourse Monthly Journal, 2014, 114, P. 13-19 (In persian).
[44] Shah, D., Zhang, K., Bayesian regression and Bitcoin, 2014, 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton). Doi:10.1109/ALLERTON.2014.7028484
[45] Sheng-Chai, C., Hung-Pin, C, ; Chun-Hao, C., A forecasting approach for stock index future using grey theory and neural networks,1999, 18(1), P.28-36.
[46] Soleymanipour, M., Jurisprudential Investigation into Virtual Money, Islamic Finance Researches, 2017, 6(2), P. 27-45 (In Persian).
[47] Tafaghodi Asrari, M., History of Money and Its Evolution, Historical Studies, 2017, 54(3), P.19- 34 (In Persian).
[48] Urquhart, A., The inefficiency of Bitcoin, Economics Letters, 2016, 148(3), P.80–92.
Doi: 10.1016/J.ECONLET.2016.09.019
[49] Yermack, D., Is Bitcoin a real currency? An economic appraisal, National Bureau of Economic Research, The Handbook of Digital Currency, 2014, 37(1), P. 31-44. DOI: 10.1016/B978-0-12-802117-0.00002-3
[50] Zhu, Y., Dickinson, D., Li, J., Analysis on the influence factors of Bitcoins price based on VEC model. Financial Innovation, 2017, 3(3), P. 28-33. Doi: 10.1186/s40854-017-0054-0
[51] Gholami Jamkarani, R., Mokhtari Kajori, D., Effect of Conservative Reporting on Investors' Opinion Divergence at the Time of Earnings Announcement, Advances in mathematical finance and applications, 2018, 3(2), P. 81-95. Doi: 10.22034/AMFA.2018.540833