The Tail Mean-Variance Model and Extended Efficient Frontier
Subject Areas : Statistical Methods in Financial ManagementEsmat Jamshidi Eini 1 , Hamid Khaloozadeh 2
1 - Department of Systems and Control, K.N. Toosi University of Technology, Tehran, Iran
2 - Department of Systems and Control, K.N. Toosi University of Technology, Tehran, Iran
Keywords:
Abstract :
[1] Artzner, P., Delbaen, F., Eber, J., and Heath, D., Coherent measures of risk, Mathematical Finance, 1999, 9(3), P. 203-228. Doi: 10.1111/1467-9965.00068.
[2] Azzalini, A., A class of distributions which includes the normal ones, Scandinavian Journal of statistics, 1985, 12, P. 171-178. Doi: 10.2307/4615982.
[3] Azzalini, A., and Capitanio, A., Statistical applications of the multivariate skew-normal distribution, Journal of the Royal Statistical Society, B, 1999, 61, P. 579-602. Doi: 10.1111/1467-9868.00194.
[4] Azzalini, A., and Dalla Valle, A., The multivariate skew-normal distribution, Biometrika, 1996, 83(4), P. 715-726. Doi: 10.1093/biomet/83.4.715.
[5] Bauder, D., Bodnar, T., Parolya, N., and Schmid, W., Bayesian mean–variance analysis: optimal portfolio selection under parameter uncertainty, Quantitative Finance, 13 May, 2020, Advance online publications. Doi: 10.1080/14697688.2020.1748214.
[6] Branco, M., and Dey, D., A general class of multivariate skew-elliptical distributions, Journal of Multivariate Analysis, 2001, 79(1), P. 99-113. Doi: 10.1006/jmva.2000.1960.
[7] Chow, K.V., Li, J., and Sopranzetti, B., The Predictive Power of Tail Risk Premia on Individual Stock Returns, 2018, 30th Annual Conference on Financial Economics and Accounting at NYU Stern.
[8] Darabi, R., Baghban, M., Application of Clayton Copula in Portfolio Optimization and its Comparison with Markowitz Mean-Variance Analysis, Advances in Mathematical Finance and Applications, 2018, 3(1), P. 33-51. Doi: 10.22034/amfa.2018.539133.
[9] Furman, E., and Landsman, Z., Tail variance premium with applications for elliptical portfolio, ASTIN Bulletin, 2006, 36(2), P. 433-462. Doi: 10.2143/AST.36.2.2017929.
[10] Granger, C., Time series concept for conditional distributions, Oxford Bulletin of Economics and Statistics, 2003, 65(s1), P. 689-701. Doi: 10.1046/j.0305-9049.2003.00094.x.
[11] Hu, W., and Kercheval, A.N., A Portfolio optimization for student t and skewed t returns, Quantitative finance journal, 2010, 10(1), P. 91-105. Doi: 10.1080/14697680902814225.
[12] Ignatieva, K., and Landsman, Z., Conditional tail risk measures for the skewed generalized hyperbolic family, Insurance: Mathematics and Economics, 2019, 86(C), P. 98-114. Doi: 10.1016/j.insmatheco.2019.02.008.
[13] Ignatieva, K., and Landsman, Z., Estimating the tails of loss severity via conditional risk measures for the family of symmetric generalised hyperbolic distributions, Insurance: Mathematics and Economics, 2015, 65(C), P. 172-186. Doi: 10.1016/j.insmatheco.2015.09.007.
[14] Ignatieva, K., and Platen, E., Modeling co-movements and tail dependency in the international stock market via copulae, Asia-Pacific Financial Markets, 2010, 17(3), P. 261-302. Doi: 10.1007/s10690-010-9116-2.
[15] Jamshidi Eini, E., Khaloozadeh, H., Tail Variance for Generalized Skew-Elliptical distribution, Communications in Statistics - Theory and Methods, 16 April, 2020, Advance online publications. Doi: 10.1080/03610926.2020.1751853.
[16] Jiang, C., Peng, H., and Yang, Y., Tail variance of portfolio under generalized Laplace distribution, Applied Mathematics and Computation, 2016, 282(C), P. 187-203. Doi: 10.1016/j.amc.2016.02.005.
[17] Kelker, D., Distribution theory of spherical distributions and location-scale parameter generalization, Sankhya: The Indian Journal of Statistics, 1970, 32(4), P. 419-430. Doi: 10.2307/25049690.
[18] Kim, J.H.T., and Kim, S-Y., Tail risk measures and risk allocation for the class of multivariate normal mean–variance mixture distributions, Insurance: Mathematics and Economics, 2019, 86, P. 145–157. Doi: 10.1016/j.insmatheco.2019.02.010.
[19] Landsman, Z., On the Tail Mean-Variance optimal portfolio selection, Insurance: Mathematics and Economics, 2010, 46, P. 547-533. Doi: 10.1016/j.insmatheco.2010.02.001.
[20] Landsman, Z., Makov, U., and Shushi, T., Tail Conditional Expectations for Generalized Skew-Elliptical Distributions, SSRN Electronic Journal, 30 June, 2013. Doi:1 10.2139/ssrn.2298265.
[21] Landsman, Z., Makov, U., and Shushi, T., Extended Generalized Skew-Elliptical Distributions and their Moments, The Indian Journal of Statistics, 2017, 79(1), P. 76-100. Doi: 10.1007/s13171-016-0090-2.
[22] Landsman, Z., Pat, N., and Dhaene, J., Tail Variance premiums for log-elliptical distributions, Insurance: Mathematics and Economics, 2013, 52(3), P. 441-447. Doi: 10.1016/j.insmatheco.2013.02.012.
[23] Landsman, Z., and Valdez, E., Tail Conditional Expectations for Elliptical Distributions, North American Actuarial Journal, 2003, 7(4), P. 55-71. Doi: 10.1080/10920277.2003.10596118.
[24] Luo, J., Chen, L., and Liu, H., Distribution characteristics of stock market liquidity, Physica A Statistical Mechanics and Its Applications, 2013, 392(23), P. 6004–6014. Doi: 10.1016/j.physa.2013.07.046.
[25] Markowitz, H., Portfolio selection, Journal of Finance, 1952, 7(1), P. 77-91. Doi: 10.1111/j.1540-6261.1952.tb01525.x.
[26] Merton, R., An analytic derivation of the efficient portfolio frontier, Journal of Financial and Quantitative Analysis, 1972, 7(4), P. 1851-1872. Doi: 10.2307/2329621.
[27] Miryekemami, S., Sadeh, E., Sabegh, Z., Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange, Advances in Mathematical Finance and Applications, 2017, 2(4), P.107-120. Doi: 10.22034/amfa.2017.536271.
[28] Morgan/Reuters, J., Risk Metrics Technical Document, Fourth Edition New York, 1996.
[29] Nematollahi, N., Farnoosh, R., and Rahnamaei, Z., Location-scale mixture of skew-elliptical distributions: Looking at the robust modeling, Statistical Methodology, 2016, 32(C), P. 131-146. Doi: 10.1016/j.stamet.2016.05.001.
[30] Owadally, I., and Landsman, Z., A characterization of optimal portfolios under the tail mean–variance criterion, Insurance: Mathematics and Economics, 2013, 52(2), P. 213-221. Doi: 10.1016/j.insmatheco.2012.12.004.
[31] Panjer, H., Measurement of risk, solvency requirements and allocation of capital within financial conglomerates, Institute of Insurance and Pension Research, University of Waterloo, Research Report, 2002, P. 1-15.
[32] Panjer, H., et al, Financial Economics, Schaumburg, Illinois: The Actuarial Foundation, 1998.
[33] Rahmani, M., Khalili Eraqi, M., and Nikoomaram, H., Portfolio Optimization by Means of Meta-Heuristic Algorithms, Advances in Mathematical Finance and Applications, 2019, 4(4), P. 83-97. Doi: 10.22034/amfa.2019.579510.1144.
[34] Shushi, T., Generalized skew-elliptical distributions are closed under affine transformations, Statistics and Probability Letters, 2018, 134(C), P. 1-4. Doi: 10.1016/j.spl.2017.10.012.
[35] Vernic, R., On the multivariate Skew-Normal distribution and its scale mixtures, An. St. Univ. Ovidius Constanta, 2005, 13(2), P. 83-96.
[36] Wang, Q., Huang, W., Wu, X., and Zhang, Ch., How Effective is the Tail Mean-Variance Model in the Fund of Fund Selection? An Empirical Study Using Various Risk Measures, Finance Research Letters, 2019, 29, P. 239-244, Doi: 10.1016/j.frl.2018.08.012.
[37] Xu, M., and Mao, T., Optimal capital allocation based on the tail mean-variance model, Insurance: Mathematics and Economics, 2013, 53(3), P. 533-543. Doi: 10.1016/j.insmatheco.2013.08.005.