A Kurganov-Tadmor numerical method for option pricing under the constant elasticity of variance model
Subject Areas : Financial MathematicsSakineh Ghiasi 1 , Nouredin Parandin 2
1 - Department of Mathematics, Payame Noor University, Tehran, Iran
2 - Department of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Keywords:
Abstract :
[1] Bahirai. A., Alipour, M., Sadiq, R., Option pricing in the presence of operational risk page, Advances in Mathematical finance and applications, 2020, 5(4), P.437-448. Doi:10.22034/amfa.2020.1897687.1409
[2] Black-Scholes F., Black- Scholes, M., The pricing of options and corporate liabilities, J. Polit. Econ, 1973, 81, P. 637-659.
[3] Blattberg, R. C., Gonedes, N. J., A comparison of the stable and student distributions as stochastic models for stock prices, Journal of Business, 1974, 47, P. 244-280. Doi: 10.1086/295634
[4] C.D. Fuh, R.H. Wang, J.C. Cheng, Option pricing in a Black–Scholes model with Markov switching, Working Paper, 2002.
[5] Cox, J.C., and Ross, S.A., The valuation of options for alternative stochastic processes, Journal of Financial Economics, 1976, 4, P.145-166. Doi:10.1016/0304-405X(76)90023-4
[6] Cox, J.C., Ingersoll, J.E., and Ross, S.A., A theory of the term structure of interest rates, In Theory of valuation, 2005, P.129-164. Doi:10.2307/1911242.
[7] Cox, J., Notes on option pricing I: Constant elasticity of variance diffusions, Unpublished note Stanford University Graduate School of Business. 1975 Sep. Doi: 10.4236/jmf.2011.13009
[8] Davoodi Kasbi, A., Dadashi, I., Azinfar, K., Stock price analysis using machine learning method (Non-sensory-parametric backup regression algorithm in linear and nonlinear mode), 2021, 6(2), P.285-301.Doi: 10.22034/amfa.2019.1869838.1232
[9] Emanuel, D., Mac, J., Beth Further results on the constant elasticity of variance call option pricing model, J. Finance. Quant. Anal, 1982, 17(4), P.533-554.
[10] Esmaili, B., Souri, A., Mirlohi, S, M., Higher moment portfolio Optimization with unequal weights based on generalized Capital Asset pricing model with independent and identically asymmetric power Distribution. Advances in Mathematical Finance and Applications, 2021, 6(2), P.263-283.Doi:10.22034/amfa.2020.1909590.1484
[11] Buffington, R. J., Elliott American options with regime switching, International Journal of Theoretical and Applied Finance, 2002, 5, P. 497-514. Doi:10.1142/S0219024902001523.
[12] Buffington, R. J., Elliott Regime switching and European Options Stochastic Theory and Control, Lecture Notes in Control and Information Sciences,2002, 280, P.73-82. Doi.10.1007/3-540-48022-6_5
[13] Bouchaud, J.P., Sornette, D., The BlackScholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes, Journal of Physique I ,1994, 4, P.863-881
[14] Jianwei Gao, Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model, Mathematics and Economics,2009, 45(1), P.9-18. Doi: 10.1016/j.insmatheco.2009.02.006.
[15] Khalegi, P., Aghai, M., Rezai, F., Salience theory and pricing stock of corporates in Tehran stock exchange, Advances in mathematical finance and applications, 2018, 3(4), P.1-16. Doi:10.22034/AMFA.2019.577140.1120
[16] Kurganov, A., Tadmor, E., New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection--Diffusion Equations, Journal of Computational Physics, 2000, 160, P.241-282.Doi:10.1006/jcph.2000.6459.
[17] Mac Beth, J. D., Merville, L. J., An empirical examination of the Black-Scholes call option pricing model, Journal of Finance, 1979, 34, P. 1173-1186. Doi.1540-6261. 1979.tb00063.x
[18] Rezai, N., Elmi, Z., Behaviour finance model and behaviour biases in stock price forecasting, Advances in mathematical finance and applications, 2018, 3(4), P.67-82. Doi:10.22034/AMFA.2019.576127.1118.
[19] Schroder, M., Computing the constant elasticity of variance option pricing formula, J. Finance, 1989, 44(1), P.211-219. Doi:10.1111/j.1540-6261. 1989.tb02414.x
[20] Thakoor, N., Tangman, D., Bhuruth, M., A new fourth-order numerical scheme for option pricing under the CEV model, Appl. Math. Lett, 2013, 26(1), P.160-164. Doi: 10.1016/j.aml.2012.08.002.
[21] Naik V., Option valuation and hedging strategies with jumps in the volatility of asset returns, Journal of Finance,1993, 48(5), P. 1969-1984. Doi: 10.1111/j.1540-6261. 1993.tb05137.
[22] Wong, H., Zhao, J., An artificial boundary method for American option pricing under the CEV model, SIAM J. Numer. Anal, 2008, 46(4), P. 2183-2209. Doi.101137/060671541.
[23] Guo, X., Information and option pricings, Journal of Quantitative Finance, 2001, 1, P.38-44. Doi:10.1080/713665550.
[24] Zhang, S., Yang, H., and Yang, Y., A multi quadric quasi-interpolations method for CEV option pricing model, Journal of Computational and Applied Mathematics, 2019, 347, P.1-11.
[25] Zomorodian, GH., Barzegar, L., Kazemi,S., Poortalebi, Effect of oil price volatility and petroleum Bloomberg index on stock market returns of Tehran stock exchange using EGRACH model, Advances in Mathematical Finance and Applications, 2016, 1(2), P.69-84. Doi:10.22034/amfa.2016.527821