A Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index
Subject Areas : Financial and Economic ModellingNavid Nasr 1 , Morteza Farhadi Sartangi 2 , Zahra Madahi 3
1 - Department of Industrial and Mechanical Engineering , Qazvin Branch.,Islamic Azad University
2 - Department of Industrial Engineering, Payam Noor University (PNU), P. O .Box 19395-3697 Tehran, Iran
3 - Department of Accounting, Islamic Azad Univery
Keywords:
Abstract :
[1] Ehteshami, S., Hamidian, M., Hajiha,Z., Shokrollahi, S., Forecasting Stock Trend by Data Mining Algrithm, Advances in Mathematical Finance and Applications, 2018, 3(1), P.97-105. Doi:10.22034/AMFA.2018.539138
[2] Mohammadipour, R., Alavimoghadam, Z., Fatemi, A., Comparison of Selected Performance of Portfolio Investment Companies by Using of Grey Forecasting and Johnson’s Index in Tehran Stock Exchange Market,Advances in Mathematical Finance & Applications,2016, 1(2), P.15-28. Doi:10.22034/AMFA.2016.527813
[3] Pagan, A.R., Schwert, G.W., Alternative models for conditional stock volatility, Journal of Econometrics, 1990, 45(1-2), P.267-290. Doi.10.1016/0304-4076(90)90101-X
[4] Kenneth, D.W., Dongchul, C., The predictive ability of several models of exchange rate volatility, Journal of Econometrics, 1995, 69(2), P.367-391. Doi:10.1016/0304-4076(94)01654-I
[5] Franses, P.H., and Ghijsels, H., Additive outliers, GARCH and forecasting volatility, International Journal of forecasting,1999, 15(1), P.1-9. Doi:10.1016/s0169-2070(98)00053-3
[6] Malmsten, H., Evaluating exponential GARCH models, SSE/EFI Working Paper Series in Economics and finance, 2004, No 564.
[7] Wu, J., Threshold GARCH Model: Theory and Application, Paper presented at The University of Western Ontario, 2010.
[8] Kuen, T.U., and Hoong, T.S., Forecasting volatility in the Singapore stock market, Asia Pacific Journal of Management, 1992, 9(1), P.1-13. Doi:10.1007/bf01732034
[9] Poon, S.H., and Granger, C.W.J., Forecasting Volatility in Financial Markets: A Review, Journal of Economic Literature, 2003, XLI, P.478–539. Doi: 10.1257/jel.41.2.478
[10] Franses, p.h., Dijk, D.V., forecasting stock market volatility using (non-linear) Grach models,1996, 15(3), P. 229-235. Doi:10.1002/(sici)1099-131x(199604)15:33.3.co;2-v
[11] Kamruzzaman, M., Macroeconomic risk factors of Australian mining companies, M.A., thesis, University of Notre Dame, Australia,2018. https://researchonline.nd.edu.au/theses/191.
[12] Yu, J., Forecasting volatility in the New Zealand stock market, Applied Financial Economics, 2002, 12, P.193-202. Doi:10.1080/09603100110090118
[13] Azar, A., Hamidian, M., Saberi, M., and Norozi, M., Evaluating the Performance of Forecasting Models for Portfolio Allocation Purposes with Generalized GRACH Method, Advances in Mathematical Finance and Applications,2017, 2(1), P.1-7. doi:10.22034/AMFA.2017.529057
[14] Sugeno, M., and Yasukawa, T., A fuzzy-logic-based approach to Qualitative modeling, IEEE transactions on fuzzy systems,1993, 1(1), P. 1-25. Doi:10.1109/tfuzz.1993.390281
[15] Zarandi, M.H.F., Turksen, I.B., and Rezaee, B., A systematic approach to fuzzy modeling for rule generation from numerical data , Paper presented at : IEEE Annual Meeting of the Fuzzy Information, 2004.
[16] Nwobi-Okoye, C. C., Okiy, S., Performance assessment of multi-input-single-output (MISO) production process using transfer function and fuzzy logic: A case study of soap production, Cogent Engineering,2016,3(1). Doi:10.1080/23311916.2016.1257082
[17]Mamdani, E.H., Application of fuzzy logic to approximate reasoning using linguistic synthesis, Paper presented at : IEEE Transactions on Computers,1977, P.1182-1191. Doi: 10.1109/TC.1977.1674779