Measuring the Efficiency of Financial Cloud Services in the Banking Industry Using the Modified Dynamic DEA with Network Structure: The Case of Iran E-Banking.
Subject Areas : Multi-Criteria Decision Analysis and its Application in Financial ManagementAlireza Poordavoodi 1 , Mohammad Reza Moazami Goudarzi 2 , Hamid Haj Seyyed Javadi 3 , Amir Masoud Rahmani 4
1 - Department of Computer Engineering, Borujerd Branch, Islamic Azad University, Borujerd, Iran
2 - Department of Mathematics, Borujerd Branch, Islamic Azad University, Borujerd, Iran.
3 - Department of Mathematics and Computer Science, Shahed University, Tehran, Iran
4 - Department of Computer Science, Khazar University, Baku, Azerbaijan
Keywords:
Abstract :
[1] Asadi, S., Nilashi, M., Husin, A.R.C., Yadegaridehkordi, E., Customers Perspectives on Adoption of Cloud Computing in Banking Sector, Information Technology and Management, 2017, 18(4), P. 305-330. Doi: 10.1007/s10799-016-0270-8.
[2] Lian, J. W., Critical Factors for Cloud Based E-Invoice Service Adoption in Taiwan: An Empirical Study, International Journal of Information Management, 2015, 35(1), P. 98-109. Doi: 10.1016/j.ijinfomgt.2014.10.005.
[3] Roy, S.K., Kesharwani, A., Bisht, S.S., The Impact of Trust and Perceived Risk on Internet Banking Adoption in India, International Journal of Bank Marketing, 2012, 30(4), P. 303-322.Doi: 10.1108/02652321211236923.
[4] Huang, C. W., Chiu, Y. H., Lin, C. H., Liu, H. H., Using a Hybrid Systems DEA Model to Analyze the Influence of Automatic Banking Service on Commercial Banks' efficiency, Journal of the Operations Research Society of Japan, 2012, 55(4), P. 209-224. Doi: 10.15807/jorsj.55.209.
[5] Zhou, P., Ang, B.W., Poh, K.-L., A Survey of Data Envelopment Analysis in Energy and Environmental Studies, European journal of operational research, 2008, 189(1), P. 1-18.Doi: 10.1016/j.ejor.2007.04.042.
[6] Kao, C., Network Data Envelopment Analysis: A Review, European journal of operational research, 2014, 239(1), P. 1-16. Doi: 10.1016/j.ejor.2014.02.039.
[7] Izadikhah, M., Saen, R., Evaluating Sustainability of Supply Chains by Two-Stage Range Directional Measure in the Presence of Negative Data, Transportation Research Part D: Transport and Environment, 2016, 49, P. 110-126. Doi: 10.1016/j.trd.2016.09.003.
[8] Kao, C., Efficiency Decomposition in Network Data Envelopment Analysis: A Relational Model, European journal of operational research, 2009, 192(3), P. 949-962. Doi: 10.1016/j.ejor.2007.10.008.
[9] Izadikhah, M., Saen, R., Assessing Sustainability of Supply Chains by Chance-Constrained Two-Stage DEA Model in the Presence of Undesirable Factors, Computers & Operations Research, 2018, 100, P. 343-367. Doi: 10.1016/j.cor.2017.10.002.
[10] Tone, K., Tsutsui, M., Dynamic DEA with Network Structure: A Slacks-Based Measure Approach, Omega, 2014, 42(1), P. 124-131. Doi: 10.1016/j.omega.2013.04.002.
[11] Tone, K., Tsutsui, M., Dynamic DEA: A Slacks-Based Measure Approach, Omega, 2010, 38(3-4), P. 145-156. Doi: 10.1016/j.omega.2009.07.003.
[12] Charnes, A., Cooper, W.W., Rhodes, E., Measuring the Efficiency of Decision Making Units, European journal of operational research, 1978, 2(6), P. 429-444. Doi: 10.1016/0377-2217(78)90138-8.
[13] Stolzer, A.J., Friend, M.A., Truong, D., Tuccio, W.A., Aguiar, M., Measuring and Evaluating Safety Management System Effectiveness Using Data Envelopment Analysis, Safety science, 2018, 104, P. 55-69. Doi: 10.1016/j.ssci.2017.12.037.
[14] Soheilirad, S., Govindan, K., Mardani, A., Zavadskas, E.K., Nilashi, M., Zakuan, N., Application of Data Envelopment Analysis Models in Supply Chain Management: A Systematic Review and Meta-Analysis, Annals of Operations Research, 2018, 271(2), P. 915-969. Doi: 10.1007/s10479-017-2605-1.
[15] Yang, L., Zhang, X., Assessing Regional Eco-Efficiency from the Perspective of Resource, Environmental and Economic Performance in China: A Bootstrapping Approach in Global Data Envelopment Analysis, Journal of Cleaner Production, 2018, 173, P. 100-111. Doi: 10.1016/j.jclepro.2016.07.166.
[16] González-Garay, A., Pozo, C., Galán-Martín, Á., Brechtelsbauer, C., Chachuat, B., Chadha, D., Hale, C., Hellgardt, K., Kogelbauer, A., Matar, O.K., Assessing the Performance of Uk Universities in the Field of Chemical Engineering Using Data Envelopment Analysis, Education for Chemical Engineers, 2019, 29, P. 29-41. Doi: 10.1016/j.ece.2019.06.003.
[17] Esfandiar, M., Saremi, M., Jahangiri Nia, H., Assessment of the Efficiency of Banks Accepted in Tehran Stock Exchange Using the Data Envelopment Analysis Technique, Advances in Mathematical Finance and Applications, 2018, 3(2), P. 1-11. Doi: 10.22034/amfa.2018.540815.
[18] Izadikhah, M., Improving the Banks Shareholder Long Term Values by Using Data Envelopment Analysis Model, Advances in Mathematical Finance and Applications, 2018, 3(2), P. 27-41.Doi: 10.22034/amfa.2018.540829.
[19] Razipour-GhalehJough, S., Lotfi, F.H., Jahanshahloo, G., Rostamy-Malkhalifeh, M., Sharafi, H., Finding Closest Target for Bank Branches in the Presence of Weight Restrictions Using Data Envelopment Analysis, Annals of Operations Research, 2019, P. 1-33. Doi: 10.1007/s10479-019-03166-6.
[20] Nasseri, S.H., Ebrahimnejad, A., Gholami, O., Fuzzy Stochastic Data Envelopment Analysis with Undesirable Outputs and Its Application to Banking Industry, International journal of fuzzy systems, 2018, 20(2), P. 534-548. Doi: 10.1007/s40815-017-0367-1.
[21] Kao, C., Liu, S. T., Multi-Period Efficiency Measurement in Data Envelopment Analysis: The Case of Taiwanese Commercial Banks, Omega, 2014, 47, P. 90-98. Doi: 10.1016/j.omega.2013.09.001.
[22] Shafiee, M., Sangi, M., and Ghaderi, M., Bank Performance Evaluation Using Dynamic DEA: A Slacks-Based Measure Approach, Journal of Data Envelopment Analysis and Decision Science, 2013, 26, P. 1-12. Doi: 10.5899/2013/dea-00026.
[23] Izadikhah, M., Tavana, M., Di Caprio, D., and Santos-Arteaga, F.J., A Novel Two-Stage DEA Production Model with Freely Distributed Initial Inputs and Shared Intermediate Outputs, Expert Systems with Applications, 2018, 99, P. 213-230. Doi: 10.1016/j.eswa.2017.11.005.
[24] Mahmoudabadi, M.Z., Emrouznejad, A., Comprehensive Performance Evaluation of Banking Branches: A Three-Stage Slacks-Based Measure (SBM) Data Envelopment Analysis, International Review of Economics & Finance, 2019, 64, P. 359-376. Doi: 10.1016/j.iref.2019.08.001.
[25] Akbari, S., Heydari, J., Keramati, M., Keramati, A., Designing a Mixed System of Network Dea for Evaluating the Efficiency of Branches of Commercial Banks in Iran, Advances in Mathematical Finance and Applications, 2019, 4(1), P. 1-13. Doi: 10.22034/amfa.2019.582260.1165.
[26] Huang, T. H., Chen, K. C., and Lin, C. I., An Extension from Network DEA to Copula-Based Network Sfa: Evidence from the Us Commercial Banks in 2009, The Quarterly Review of Economics and Finance, 2018, 67, P. 51-62. Doi: 10.1016/j.qref.2017.04.007.
[27] Barat, M., Tohidi, G., Sanei, M., Razavyan, S., Data Envelopment Analysis for Decision Making Unit with Nonhomogeneous Internal Structures: An Application to the Banking Industry, Journal of the Operational Research Society, 2019, 70(5), P. 760-769. Doi: 10.1080/01605682.2018.1457483.
[28] Mahmoudi, R., Emrouznejad, A., Rasti-Barzoki, M., A Bargaining Game Model for Performance Assessment in Network DEA Considering Sub-Networks: A Real Case Study in Banking, Neural Computing and Applications, 2019, 31(10), P. 6429-6447. Doi: 10.1007/s00521-018-3428-y.
[29] Zhong, S., Du, L., Wang, H., China City Commercial Bank Based on Network DEA Empirical Study of Operational Efficiency, 2019. Doi: 10.25236/meici.2019.047.
[30] Chao, C. M., Yu, M. M., Hsiung, N. H., Chen, L. H., Profitability Efficiency, Marketability Efficiency and Technology Gaps in Taiwan’s Banking Industry: Meta-Frontier Network Data Envelopment Analysis, Applied Economics, 2018, 50(3), P. 233-250. Doi: 10.1080/00036846.2017.1316827.
[31] Tavana, M., Izadikhah, M., Di Caprio, D., Saen, R.F., A New Dynamic Range Directional Measure for Two-Stage Data Envelopment Analysis Models with Negative Data, Computers & Industrial Engineering, 2018, 115, P. 427-448. Doi: 10.1016/j.cie.2017.11.024.
[32] Yu, Y., Huang, J., Shao, Y., The Sustainability Performance of Chinese Banks: A New Network Data Envelopment Analysis Approach and Panel Regression, Sustainability, 2019, 11(6), P. 1622. Doi: 10.3390/su11061622.
[33] Niknafs, J., Keramati, M.A., Monfared, J.H., Estimating Efficiency of Bank Branches by Dynamic Network Data Envelopment Analysis and Artificial Neural Network, Advances in Mathematical Finance and Applications, 5(3), P. 1-15. Doi: 10.22034/amfa.2019.1585957.1192.
[34] Wanke, P., Azad, M.A.K., Emrouznejad, A., Antunes, J., A Dynamic Network DEA Model for Accounting and Financial Indicators: A Case of Efficiency in Mena Banking, International Review of Economics & Finance, 2019, 61, P. 52-68. Doi: 10.1016/j.iref.2019.01.004.
[35] Kweh, Q.L., Lu, W.-M., Nourani, M., and Ghazali@ Mohd Zain, M.H., Risk Management and Dynamic Network Performance: An Illustration Using a Dual Banking System, Applied Economics, 2018, 50(30), P. 3285-3299. Doi: 10.1080/00036846.2017.1420889.
[36] Zhou, Z., Amowine, N., Huang, D., Quantitative Efficiency Assessment Based on the Dynamic Slack-Based Network Data Envelopment Analysis for Commercial Banks in Ghana, South African Journal of Economic and Management Sciences, 2018, 21(1), P. 1-11. Doi: 10.4102/sajems.v21i1.1717
[37] Thabit, F., Alhomdy, S.A.H., and Jagtap, S.B., Toward a Model for Cloud Computing Banking in Yemen, International Journal of Research in Advanced Engineering and Technology, 2019, 5(4), P. 14-18. Doi: 10.2139/ssrn.3484881.
[38] Willcocks, L., Reynolds, P., The Commonwealth Bank of Australia–Strategizing from Outsourcing to the Cloud Part 1: Perennial Challenges Amidst Turbulent Technology, Journal of Information Technology Teaching Cases, 2015, 4(2), P. 86-98. Doi: 10.1057/jittc.2014.6.
[39] Jatoth, C., Gangadharan, G., Fiore, U., Evaluating the Efficiency of Cloud Services Using Modified Data Envelopment Analysis and Modified Super-Efficiency Data Envelopment Analysis, Soft Computing, 2017, 21(23), P. 7221-7234. Doi: 10.1007/s00500-016-2267-y.
[40] Kao, H.Y., Wu, D. J., Huang, C.H., Evaluation of Cloud Service Industry with Dynamic and Network DEA Models, Applied Mathematics and Computation, 2017, 315, P. 188-202.Doi: 10.1016/j.amc.2017.07.059.
[41] Poordavoodi, A., Goudarzi, M. R. M., Javadi, H. H. S., Rahmani, A. M., Izadikhah, M., Toward a More Accurate Web Service Selection Using Modified Interval DEA Models with Undesirable Outputs, Computer Modeling in Engineering & Sciences, 2020, 123(2), P. 525--570. Doi: 10.32604/cmes.2020.08854.
[42] Azadi, M., Izadikhah, M., Ramezani, F., Hussain, F., A Mixed Ideal and Anti-Ideal DEA Model: An Application to Evaluate Cloud Service Providers, IMA Journal of Management Mathematics, 2020, 31(2), P. 233-256. Doi: 10.1093/imaman/dpz012.
[43] Tone, K., A Slacks-Based Measure of Efficiency in Data Envelopment Analysis, European journal of operational research, 2001, 130(3), P. 498-509.
[44] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I., Cloud Computing and Emerging It Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility, Future Generation computer systems, 2009, 25(6), P. 599-616. Doi: 10.1016/j.future.2008.12.001.
[45] Mell, P., Grance, T., The Nist Definition of Cloud Computing, 2011. Doi: 10.6028/NIST.SP.800-145.
[46] Chang, V., Ramachandran, M., Financial Modeling and Prediction as a Service, Journal of Grid Computing, 2017, 15(2), P. 177-195. Doi: 10.1007/s10723-017-9393-3.
[47] Doelitzscher, F., Sulistio, A., Reich, C., Kuijs, H., Wolf, D., Private Cloud for Collaboration and E-Learning Services: From IaaS to SaaS, Computing, 2011, 91(1), P. 23-42. Doi: 10.1007/s00607-010-0106-z.
[48] Lin, K.W., Deng, D. J., A Novel Parallel Algorithm for Frequent Pattern Mining with Privacy Preserved in Cloud Computing Environments, International Journal of Ad Hoc and Ubiquitous Computing, 2010, 6(4), P. 205-215. Doi: 10.1504/IJAHUC.2010.035533.
[49] Az-Zahra, T.S., The Advantages from Cloud Computing Application Towards Smme (Umkm), Jurnal Online Informatika, 2019, 4(1), P. 28-32. Doi: 10.15575/join.v4i1.307.
[50] Soltanzadeh, E., Omrani, H., Dynamic Network Data Envelopment Analysis Model with Fuzzy Inputs and Outputs: An Application for Iranian Airlines, Applied Soft Computing, 2018, 63, P. 268-288. Doi: 10.1016/j.asoc.2017.11.031.
[51] Mehrabian, S., Jahanshahloo, G.R., Alirezaee, M.R., Amin, G.R., An Assurance Interval for the Non-Archimedean Epsilon in DEA Models, Operations Research, 2000, 48(2), P. 344-347. Doi: 10.1287/opre.48.2.344.12381.
[52] Toloo, M., The Role of Non-Archimedean Epsilon in Finding the Most Efficient Unit: With an Application of Professional Tennis Players, Applied Mathematical Modelling, 2014, 38(21-22), P. 5334-5346. Doi: 10.1016/j.apm.2014.04.010.
[53] Tone, K., Toloo, M., Izadikhah, M., A Modified Slacks-Based Measure of Efficiency in Data Envelopment Analysis, European Journal of Operational Research, 2020. Doi: 10.1016/j.ejor.2020.04.019.
[54] Tone, K., Chang, T.S., Wu, C.-H., Handling Negative Data in Slacks-Based Measure Data Envelopment Analysis Models, European Journal of Operational Research, 2020, 282(3), P. 926-935. Doi: 10.1016/j.ejor.2019.09.055.
[55] Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H., Qos-Aware Middleware for Web Services Composition, IEEE Transactions on software engineering, 2004, 30(5), P. 311-327. Doi: 10.1109/TSE.2004.11.
[56] Garg, S.K., Versteeg, S.,Buyya, R., A Framework for Ranking of Cloud Computing Services, Future Generation Computer Systems, 2013, 29(4), P. 1012-1023. Doi: 10.1016/j.future.2012.06.006.
[57] Al-Masri, E., Mahmoud, Q.H., Discovering the Best Web Service, in Proceedings of the 16th international conference on World Wide Web, 2007. Doi: 10.1145/1242572.1242795.
[58] Villasenor Alva, J.A., Estrada, E.G., A Generalization of Shapiro–Wilk's Test for Multivariate Normality, Communications in Statistics—Theory and Methods, 2009, 38(11), P. 1870-1883. Doi: 10.1080/03610920802474465.
[59] Massey Jr, F.J., The Kolmogorov-Smirnov Test for Goodness of Fit, Journal of the American statistical Association, 1951, 46(253), P. 68-78. Doi: 10.1080/01621459.1951.10500769.
[60] Chen, F., Dou, R., Li, M., and Wu, H., A Flexible Qos-Aware Web Service Composition Method by Multi-Objective Optimization in Cloud Manufacturing, Computers & Industrial Engineering, 2016, 99, P. 423-431. Doi: 10.1016/j.cie.2015.12.018.
[61] Despotis, D.K., Improving the Discriminating Power of DEA: Focus on Globally Efficient Units, Journal of the Operational Research Society, 2002, 53(3), P. 314-323. Doi: 10.1057/palgrave.jors.2601253.
[62] da Silva, A.F., Marins, F.A.S., Dias, E.X., Improving the Discrimination Power with a New Multi-Criteria Data Envelopment Model, Annals of Operations Research, 2020, 287(1), P. 127-159. Doi: 10.1007/s10479-019-03446-1.
[63] Ebrahimnejad, A., Ziari, S., New Model for Improving Discrimination Power in DEA Based on Dispersion of Weights, International Journal of Mathematics in Operational Research, 2019, 14(3), P. 433-450. Doi: 10.1504/IJMOR.2019.099388.
[64] Peykani, P., Mohammadi, E., Emrouznejad, A., Pishvaee, M.S., Rostamy-Malkhalifeh, M., Fuzzy Data Envelopment Analysis: An Adjustable Approach, Expert Systems with Applications, 2019, 136, P. 439-452. Doi: 10.1016/j.eswa.2019.06.039.
[65] Peykani, P., Mohammadi, E., Pishvaee, M.S., Rostamy-Malkhalifeh, M., and Jabbarzadeh, A., A Novel Fuzzy Data Envelopment Analysis Based on Robust Possibilistic Programming: Possibility, Necessity and Credibility-Based Approaches, RAIRO-Operations Research, 2018, 52(4-5), P. 1445-1463. Doi: 10.1051/ro/2018019
[66] Peykani, P., Mohammadi, E., Rostamy-Malkhalifeh, M., Hosseinzadeh Lotfi, F., Fuzzy Data Envelopment Analysis Approach for Ranking of Stocks with an Application to Tehran Stock Exchange, Advances in Mathematical Finance and Applications, 2019, 4(1), P. 31-43. Doi: 10.22034/amfa.2019.581412.1155.
[67] Rostamy-Malkhalifeh, M., Mollaeian, E., Evaluating Performance Supply Chain by a New Non-Radial Network DEA Model with Fuzzy Data, Science, 2012, 9. Doi: 10.5899/2012/dea-00005.
[68] Peykani, P., Mohammadi, E., Interval Network Data Envelopment Analysis Model for Classification of Investment Companies in the Presence of Uncertain Data, Journal of Industrial and Systems Engineering, 2018, 11(Special issue: 14th International Industrial Engineering Conference), P. 63-72.
[69] Lotfi, F.H., Navabakhs, M., Tehranian, A., Rostamy-Malkhalifeh, M., Shahverdi, R., Ranking Bank Branches with Interval Data—the Application of DEA, in International Mathematical Forum, 2007. Citeseer.
[70] Peykani, P., Mohammadi, E., Saen, R.F., Sadjadi, S.J., Rostamy‐Malkhalifeh, M., Data Envelopment Analysis and Robust Optimization: A Review, Expert Systems, 2020, P. e12534. Doi: 10.1111/exsy.12534.
[71] Peykani, P., Mohammadi, E., Jabbarzadeh, A., Jandaghian, A., Utilizing Robust Data Envelopment Analysis Model for Measuring Efficiency of Stock, a Case Study: Tehran Stock Exchange, Journal of New Researches in Mathematics, 2016, 1(4), P. 15-24.
[72] Peykani, P., Mohammadi, E., Seyed Esmaeili, F.S., Stock Evaluation under Mixed Uncertainties Using Robust DEA Model, Journal of Quality Engineering and Production Optimization, 2019, 4(1), P. 73-84. Doi: 10.22070/jqepo.2019.3652.1080.
[73] Rostamy-Malkhalifeh, M., Mollaeian, E., and Mamizadeh-Chatghayeh, S., A New Non-Radial Network DEA Model for Evaluating Performance Supply Chain, Indian Journal of Science and Technology, 2013, 6(3), P. 4188-4192.
[74] Peykani, P., Mohammadi, E., Window Network Data Envelopment Analysis: An Application to Investment Companies, International Journal of Industrial Mathematics, 2020, 12(1), P. 89-99.
[75] Nikfarjam, H., Rostamy-Malkhalifeh, M., Mamizadeh-Chatghayeh, S., Measuring Supply Chain Efficiency Based on a Hybrid Approach, Transportation Research Part D: Transport and Environment, 2015, 39, P. 141-150. Doi: 10.1016/j.trd.2015.06.004.